首先我们分析一下下面的代码:

import tensorflow as tf
import numpy as np a=tf.constant([[1., 2., 3.],[4., 5., 6.]])
b=np.float32(np.random.randn(3,2))
#c=tf.matmul(a,b)
c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print(c.eval())

问题是上面的代码编译正确吗?编译一下就知道,错误信息如下:

ValueError: Dimensions must be equal, but are 2 and 3 for 'Mul' (op: 'Mul') with input shapes: [2,3], [3,2].

显然,tf.multiply()表示点积,因此维度要一样。而tf.matmul()表示普通的矩阵乘法。

而且tf.multiply(a,b)和tf.matmul(a,b)都要求a和b的类型必须一致。但是之间存在着细微的区别。

在tf中所有返回的tensor,不管传进去是什么类型,传出来的都是numpy ndarray对象。

看看官网API介绍:

tf.matmul(
a,
b,
transpose_a=False,
transpose_b=False,
adjoint_a=False,
adjoint_b=False,
a_is_sparse=False,
b_is_sparse=False,
name=None
)
tf.multiply(
x,
y,
name=None
)

但是tf.matmul(a,b)函数不仅要求a和b的类型必须完全一致,同时返回的tensor类型同a和b一致;而tf.multiply(a,b)函数仅要求a和b的类型显式一致,同时返回的tensor类型与a一致,即在不声明类型的情况下,编译不报错。

例如:

#类型一致,可以运行
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]],dtype=np.float32)
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
#c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (type(c.eval()),type(a.eval()),type(b))
#类型不一致,不可以运行
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]])
b=np.float32(np.random.randn(3,2))
c=tf.matmul(a,b)
#c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (type(c.eval()),type(a.eval()),type(b))
#类型不一致,可以运行,结果的类型和a一致
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]])
b=np.float32(np.random.randn(2,3))
#c=tf.matmul(a,b)
c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (c.eval())
print (type(c.eval()),type(a.eval()),type(b))
#类型不一致,不可以运行
import tensorflow as tf
import numpy as np a=tf.constant([[1, 2, 3],[4, 5, 6]], dtype=np.float32)
b=tf.constant([[1, 2, 3],[4, 5, 6]], dtype=np.int32)
#c=tf.matmul(a,b)
c=tf.multiply(a,b)
init=tf.global_variables_initializer()
with tf.Session() as sess:
print (c.eval())
print (type(c.eval()),type(a.eval()),type(b))

tf.matmul()和tf.multipy()的区别的更多相关文章

  1. tf.matmul() 和tf.multiply() 的区别

    1.tf.multiply()两个矩阵中对应元素各自相乘 格式: tf.multiply(x, y, name=None) 参数: x: 一个类型为:half, float32, float64, u ...

  2. deep_learning_Function_tf.add()、tf.subtract()、tf.multiply()、tf.div()

    tf.add().tf.subtract().tf.multiply().tf.div()函数介绍和示例 1. tf.add() 释义:加法操作 示例: x = tf.constant(2, dtyp ...

  3. tf.multiply()和tf.matmul()区别

    (1)tf.multiply是点乘,即Returns x * y element-wise. (2)tf.matmul是矩阵乘法,即Multiplies matrix a by matrix b, p ...

  4. 图文:TF卡和SD卡的区别及什么是TF卡?什么是SD卡

    小型存储设备凭借低廉的价格.多样化的品种.实用等特性大量充斥在大家身边,比如智能手机手机上.数码照相机上.游戏机上(一般是掌机)等都小型电子设备都频繁的使用到这种统称为SD的产品,比如TF卡和SD卡( ...

  5. tf.variable和tf.get_Variable以及tf.name_scope和tf.variable_scope的区别

    在训练深度网络时,为了减少需要训练参数的个数(比如具有simase结构的LSTM模型).或是多机多卡并行化训练大数据大模型(比如数据并行化)等情况时,往往需要共享变量.另外一方面是当一个深度学习模型变 ...

  6. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  7. 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)

    1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...

  8. tf.Session()和tf.InteractiveSession()的区别

    官方tutorial是这么说的: The only difference with a regular Session is that an InteractiveSession installs i ...

  9. tf.matmul函数和tf.multiply函数

    tf.matmul(a,b,transpose_a=False,transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=Fal ...

随机推荐

  1. jmeter 参数化测试

    变量的值可以不改变,可以被定义一次,如果不使用,不会改变值. 在测试计划中,变量可以做为方便的频繁使用的表达式,或都作为在测试运行中的可能会改变的常量,例如 线程组中线程的数量.主机名称 在确定一个测 ...

  2. DTD举例一

    DTD举例一: <!--动作库约束文件--> <!DOCTYPE actionGroup [ <!ELEMENT actionGroup (action*)> <! ...

  3. 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

    http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...

  4. BZOJ4378[POI2015]Logistyka——树状数组

    题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...

  5. day21 计算器作业

    import re express = '1 - 2 * ( ( 6 0 -3 0 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4 ...

  6. 【POJ1456】Supermarket(贪心)

    BUPT2017 wintertraining(16) #4 F POJ - 1456 题意 每个商品有过期日期和价格,每天可以卖一个商品,必须在过期前出售才能收益,求最大收益. 题解 贪心,按价格排 ...

  7. 架构师成长之路2.1-PXE+Kickstart原理

    点击返回架构师成长之路 架构师成长之路2.1-PXE+Kickstart原理 PXE+Kickstart 主要用于在公司内网批量安装新服务器系统,这极大地简化了用光盘重复安装Linux操作系统的过程, ...

  8. Android Service服务的生命周期

    与activity类似,服务也存在生命周期回调方法,你可以实现这些方法来监控服务的状态变化,并在适当的时机执行一些操作. 以下代码提纲展示了服务的每个生命周期回调方法: public class Ex ...

  9. Java NIO -- 缓冲区(Buffer)的数据存取

    缓冲区(Buffer): 一个用于特定基本数据类型的容器.由 java.nio 包定义的,所有缓冲区都是 Buffer 抽象类的子类.Java NIO 中的 Buffer 主要用于与 NIO 通道进行 ...

  10. Logstash解析Json array

    logstash解析json数组是一种常见的需求,我以网上一组数据为例来描述 我们的数据test.json内容如下:(此处我linux上的json文本需要是compact的) {"type& ...