美团店铺评价语言处理以及分类(tfidf,SVM,决策树,随机森林,Knn,ensemble)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
df=pd.read_excel("all_data_meituan.xlsx")[["comment","star"]]
df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
comment | star | |
---|---|---|
0 | 还行吧,建议不要排队那个烤鸭和羊肉串,因为烤肉时间本来就不够,排那个要半小时,然后再回来吃烤... | 40 |
1 | 去过好几次了 东西还是老样子 没增添什么新花样 环境倒是挺不错 离我们这也挺近 味道还可以 ... | 40 |
2 | 一个字:好!!! #羊肉串# #五花肉# #牛舌# #很好吃# #鸡软骨# #拌菜# #抄河... | 50 |
3 | 第一次来吃,之前看过好多推荐说这个好吃,真的抱了好大希望,排队的人挺多的,想吃得趁早来啊。还... | 20 |
4 | 羊肉串真的不太好吃,那种说膻不膻说臭不臭的味。烤鸭还行,大虾没少吃,也就到那吃大虾了,吃完了... | 30 |
df.shape
(17400, 2)
df['sentiment']=df['star'].apply(lambda x:1 if x>30 else 0)
df=df.drop_duplicates() ## 去掉重复的评论
df=df.dropna()
X=pd.concat([df[['comment']],df[['comment']],df[['comment']]])
y=pd.concat([df.sentiment,df.sentiment,df.sentiment])
X.columns=['comment']
X.reset_index
X.shape
(3138, 1)
import jieba
def chinese_word_cut(mytext):
return " ".join(jieba.cut(mytext))
X['cut_comment']=X["comment"].apply(chinese_word_cut)
X['cut_comment'].head()
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\FRED-H~1\AppData\Local\Temp\jieba.cache
Loading model cost 0.651 seconds.
Prefix dict has been built succesfully.
0 还行 吧 , 建议 不要 排队 那个 烤鸭 和 羊肉串 , 因为 烤肉 时间 本来 就 不够...
1 去过 好 几次 了 东西 还是 老 样子 没 增添 什么 新花样 环境 倒 是 ...
2 一个 字 : 好 ! ! ! # 羊肉串 # # 五花肉 # # 牛舌 # ...
3 第一次 来 吃 , 之前 看过 好多 推荐 说 这个 好吃 , 真的 抱 了 好 大 希望 ...
4 羊肉串 真的 不太 好吃 , 那种 说 膻 不 膻 说 臭 不 臭 的 味 。 烤鸭 还 行...
Name: cut_comment, dtype: object
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test= train_test_split(X,y,random_state=42,test_size=0.25)
def get_custom_stopwords(stop_words_file):
with open(stop_words_file,encoding="utf-8") as f:
custom_stopwords_list=[i.strip() for i in f.readlines()]
return custom_stopwords_list
stop_words_file = "stopwords.txt"
stopwords = get_custom_stopwords(stop_words_file)
stopwords[-10:]
['100', '01', '02', '03', '04', '05', '06', '07', '08', '09']
from sklearn.feature_extraction.text import CountVectorizer
vect=CountVectorizer()
vect
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
tokenizer=None, vocabulary=None)
vect.fit_transform(X_train["cut_comment"])
<2353x1965 sparse matrix of type '<class 'numpy.int64'>'
with 20491 stored elements in Compressed Sparse Row format>
vect.fit_transform(X_train["cut_comment"]).toarray().shape
(2353, 1965)
# pd.DataFrame(vect.fit_transform(X_train["cut_comment"]).toarray(),columns=vect.get_feature_names()).iloc[:10,:22]
# print(vect.get_feature_names())
# # 数据维数1956,不算很大(未使用停用词)
vect = CountVectorizer(token_pattern=u'(?u)\\b[^\\d\\W]\\w+\\b',stop_words=frozenset(stopwords)) # 去除停用词
pd.DataFrame(vect.fit_transform(X_train['cut_comment']).toarray(), columns=vect.get_feature_names()).head()
# 1691 columns,去掉以数字为特征值的列,减少了三列编程1691
# max_df = 0.8 # 在超过这一比例的文档中出现的关键词(过于平凡),去除掉。
# min_df = 3 # 在低于这一数量的文档中出现的关键词(过于独特),去除掉。
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
amazing | happy | ktv | pm2 | 一万个 | 一个多 | 一个月 | 一串 | 一人 | 一件 | ... | 麻烦 | 麻酱 | 黄喉 | 黄桃 | 黄花鱼 | 黄金 | 黑乎乎 | 黑椒 | 黑胡椒 | 齐全 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 rows × 1691 columns
from sklearn.pipeline import make_pipeline
from sklearn.svm import SVC
from sklearn import metrics
svc_cl=SVC()
pipe=make_pipeline(vect,svc_cl)
pipe.fit(X_train.cut_comment, y_train)
Pipeline(memory=None,
steps=[('countvectorizer', CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None,
stop_words=...,
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))])
y_pred = pipe.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred)
0.6318471337579618
metrics.confusion_matrix(y_test,y_pred)
array([[ 0, 289],
[ 0, 496]], dtype=int64)
支持向量机分类
from sklearn.svm import SVC
svc_cl=SVC() # 实例化
pipe=make_pipeline(vect,svc_cl)
pipe.fit(X_train.cut_comment, y_train)
y_pred = pipe.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred)
0.6318471337579618
支持向量机 网格搜索
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
# svc=SVC(random_state=1)
from sklearn.linear_model import SGDClassifier
from sklearn.feature_extraction.text import TfidfTransformer
tfidf=TfidfTransformer()
# ('tfidf',
# TfidfTransformer()),
# ('clf',
# SGDClassifier(max_iter=1000)),
# svc=SGDClassifier(max_iter=1000)
svc=SVC()
# pipe=make_pipeline(vect,SVC)
pipe_svc=Pipeline([("scl",vect),('tfidf',tfidf),("clf",svc)])
para_range=[0.0001,0.001,0.01,0.1,1.0,10,100,1000]
para_grid=[
{'clf__C':para_range,
'clf__kernel':['linear']},
{'clf__gamma':para_range,
'clf__kernel':['rbf']}
]
gs=GridSearchCV(estimator=pipe_svc,param_grid=para_grid,cv=10,n_jobs=-1)
gs.fit(X_train.cut_comment,y_train)
GridSearchCV(cv=10, error_score='raise',
estimator=Pipeline(memory=None,
steps=[('scl', CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None,
stop_words=frozenset({'...,
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))]),
fit_params=None, iid=True, n_jobs=-1,
param_grid=[{'clf__C': [0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100, 1000], 'clf__kernel': ['linear']}, {'clf__gamma': [0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100, 1000], 'clf__kernel': ['rbf']}],
pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring=None, verbose=0)
gs.best_estimator_.fit(X_train.cut_comment,y_train)
Pipeline(memory=None,
steps=[('scl', CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None,
stop_words=frozenset({'...,
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False))])
y_pred = gs.best_estimator_.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred)
0.9503184713375796
临近法
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=5,p=2,metric='minkowski')
pipe=make_pipeline(vect,knn)
pipe.fit(X_train.cut_comment, y_train)
Pipeline(memory=None,
steps=[('countvectorizer', CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None,
stop_words=...owski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform'))])
y_pred = pipe.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred)
0.7070063694267515
metrics.confusion_matrix(y_test,y_pred)
array([[ 87, 202],
[ 28, 468]], dtype=int64)
决策树
from sklearn.tree import DecisionTreeClassifier
tree=DecisionTreeClassifier(criterion='entropy',random_state=1)
pipe=make_pipeline(vect,tree)
pipe.fit(X_train.cut_comment, y_train)
y_pred = pipe.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred)
0.9388535031847134
metrics.confusion_matrix(y_test,y_pred)
array([[256, 33],
[ 15, 481]], dtype=int64)
随机森林
from sklearn.ensemble import RandomForestClassifier
forest=RandomForestClassifier(criterion='entropy',random_state=1,n_jobs=2)
pipe=make_pipeline(vect,forest)
pipe.fit(X_train.cut_comment, y_train)
y_pred = pipe.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred)
# 加上tfidf反而准确率96.5降低至95.0,
0.9656050955414013
metrics.confusion_matrix(y_test,y_pred)
array([[265, 24],
[ 3, 493]], dtype=int64)
bagging方法
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
tree=DecisionTreeClassifier(criterion='entropy',random_state=1)
bag=BaggingClassifier(base_estimator=tree,
n_estimators=10,
max_samples=1.0,
max_features=1.0,
bootstrap=True,
bootstrap_features=False,
n_jobs=1,random_state=1)
pipe=make_pipeline(vect,tfidf,bag)
pipe.fit(X_train.cut_comment, y_train)
y_pred = pipe.predict(X_test.cut_comment)
metrics.accuracy_score(y_test,y_pred) # 没用转化td-idf 93.2%, 加上转化步骤,准确率提升到95.5
0.9554140127388535
metrics.confusion_matrix(y_test,y_pred)
array([[260, 29],
[ 6, 490]], dtype=int64)
美团店铺评价语言处理以及分类(tfidf,SVM,决策树,随机森林,Knn,ensemble)的更多相关文章
- 美团店铺评价语言处理以及文本分类(logistic regression)
美团店铺评价语言处理以及分类(LogisticRegression) 第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 本文是该系列的第四篇 主要讨论逻辑回归分类算法的参数 ...
- AI学习---分类算法[K-近邻 + 朴素贝叶斯 + 决策树 + 随机森林 ]
分类算法:对目标值进行分类的算法 1.sklearn转换器(特征工程)和预估器(机器学习) 2.KNN算法(根据邻居确定类别 + 欧氏距离 + k的确定),时间复杂度高,适合小数据 ...
- scikit-learn机器学习(四)使用决策树做分类,并画出决策树,随机森林对比
数据来自 UCI 数据集 匹马印第安人糖尿病数据集 载入数据 # -*- coding: utf-8 -*- import pandas as pd import matplotlib matplot ...
- 随机森林分类(Random Forest Classification)
其实,之前就接触过随机森林,但仅仅是用来做分类和回归.最近,因为要实现一个idea,想到用随机森林做ensemble learning才具体的来看其理论知识.随机森林主要是用到决策树的理论,也就是用决 ...
- 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者
python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...
- [转载]Magento 店铺多语言设置
本文以扩展中文包为例: 首先进入自己 Magento 后台 系统 -> 管理商店(System -> Manage Stores) 单击 “创建店铺视图”(Create Store Vie ...
- R语言分类算法之随机森林
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策 ...
- R语言-聚类与分类
一.聚类: 一般步骤: 1.选择合适的变量 2.缩放数据 3.寻找异常点 4.计算距离 5.选择聚类算法 6.采用一种或多种聚类方法 7.确定类的数目 8.获得最终聚类的解决方案 9.结果可视化 10 ...
- R语言常用包分类总结
常用包: ——数据处理:lubridata ,plyr ,reshape2,stringr,formatR,mcmc: ——机器学习:nnet,rpart,tree,party,lars,boost, ...
随机推荐
- springboot自定义http反馈状态码
最近在开发一些http server类型程序,通过spring boot构建一些web程序,这些web程序之间通过http进行数据访问.共享,如下图: 假设现在client发起一次保存数据的请求到se ...
- Next Permutation leetcode java
题目: Implement next permutation, which rearranges numbers into the lexicographically next greater per ...
- Android四大组件应用系列——使用ContentProvider实现跨进程通讯
一.问题描述 如何在Android中实现不同应用之间的通讯(既跨进程进行调用)?Android提供了多种实现方式,使我们可以实现跨进程访问Activity.通过ContentProvider跨进程访问 ...
- C#中Invoke的用法2
在用.NET Framework框架的WinForm构建GUI程序界面时,如果要在控件的事件响应函数中改变控件的状态,例如:某个按钮上的文本原先叫“打开”,单击之后按钮上的文本显示“关闭”,初学者往往 ...
- sublime text3全局设置
1.快捷键 ctrl+shift+p 2.输入 PackageResourceViewer 3.找到后 Open Resource 打开 , 4.选择 Theme-default,鼠标双击Theme ...
- file命令与magic file【转】
Linux基础——file命令与magic file [日期:2013-06-03] 来源:Linux社区 作者:sin90lzc [字体:大 中 小] //本文基于CentOS6.3 dist ...
- MySql按周,按月,按日分组统计数据
知识关键词:DATE_FORMAT select DATE_FORMAT(create_time,'%Y%u') weeks,count(caseid) count from tc_case grou ...
- Boost中的智能指针(转)
这篇文章主要介绍 boost中的智能指针的使用.(转自:http://www.cnblogs.com/sld666666/archive/2010/12/16/1908265.html) 内存管理是一 ...
- openssl - X509证书操作函数
原文链接: http://blog.csdn.net/zqt520/article/details/26965797 现有的证书大都采用X.509规范,主要同以下信息组成:版本号.证书序列号.有效期. ...
- R绘制3D散点图
目前主要使用ggplot2做一些数据可视化的分析,但是ggplot2有个很大的缺陷是不支持3D作图,所以需要查找其他替代方案. 下面找到的两个替代方案不错,亲测可行,记录于此. 交互3D librar ...