NLP自然语言处理中的hanlp分词实例
本篇分享的依然是关于hanlp的分词使用,文章内容分享自 gladosAI 的博客,本篇文章中提出了一个问题,hanlp分词影响了实验判断结果。为何会如此,不妨一起学习一下 gladosAI 的这篇文章。
学习内容
在之前的实验中得到了不在词向量里的词与分词结果,结果有500多个词不在词向量里,解决方案就是重新分词,或再追加训练这些词到词向量里。但后者相对麻烦且目前样本量不大。我跟据词向量的作者[6]所使用的分词工具来分词,会比不同工具(jieba)的效果要好,因为都是同一模式的分词,分出来的词应该都会存在于大型语料库中。实验证明思路是对的,最后结果是只有60几个词不在词向量里,其中大部分为名词,还有些为因语音翻译问题所造成的出错连词,所有这些词也只出现一次,这部分可以考虑最后删去也不会影响结果。改善未出现词是个关键步骤,因为此后模型会用到词向量,如果未出现词过多,会影响词向量效果。
问题:不过最后HANLP分词影响了实验判断结果,准确率从93%(jieba分词,同模型同参数)下降到90%。
实验:使用HanLP分词
1,前期准备,(环境ubuntu,python3)安装JAVA-10[3](hanlp是JAVA开发的,即使使用python调用pyhanlp需要借助java), jpype(python中虚拟java环境),hanlp(开源中文处理工具,不只是分词还有各种工具),hanlp的root路径配置及data数据包放置[4]
2,主要程序[5]
w2v_model = KeyedVectors.load_word2vec_format(w2vpath, binary=False, unicode_errors='ignore') # 加载词向量
hanlppath=\"-Djava.class.path=/media/glados/Learning/project/NLP/hanlp/hanlp-1.6.4.jar:/media/glados/Learning/project/NLP/hanlp/"
jp.startJVM(jp.getDefaultJVMPath(), hanlppath) # , "-Xms1g", "-Xmx1g") # 启动JVM, Xmx1g分配1g内存
jp.JClass('com.hankcs.hanlp.HanLP$Config').ShowTermNature = False # 关闭分词属性显示
HanLP = jp.JClass('com.hankcs.hanlp.HanLP') #普通分词模式
words = str(HanLP.segment(sentence)) #分词将结果转为str
words = re.sub('[反斜杠[反斜杠],\n]', ' ', words) # 这里注意实际程序是单\,在blog里会出问题,所以用反斜杠替代
words = words.split()
words = del_stopword(words)
...
jp.shutdownJVM() # 最后关闭java虚拟环境
使用的是HANLP的普通分词功能,另外需注意,hanlp.segment()不能直接输出或赋值给python,因为其是java环境中数据,所以只有转为str()后,再进行处理,否则会报错#A fatal error。(另外还有其他java与python数据对应问题,在这里没遇到,请参考其他)
词向量选用的是“Mixed-large综合”[6],其包括百度wiki百科、人民日报等,总共1293214个词。
Hanlp的中部份功能没法使用,例如精确分词CRF。另外,要先加载词向量再加载java虚拟环境。#A fatal error has been detected by the Java Runtime Environment
3,实验结果
(模型使用的是特征为tfidf的lsi模型, 参数:num_topics=3, 判断是否相似阀值为0.45,即大于0.45为true相似 )
同模型同参数下,jieba分词结果
jieba分词未出现在词向量的约500多,有些词出现了好几次,而hanlp分词只有60几个未出现,且多数为名词,只出现过一次。
4,分析
在样本中,所有样本分词结果jieba比hanlp要多分出100个词左右。所以推测因hanlp分词细粒度大,分出词少,导致较少的共现词出现(也可能是hanlp分词精度更高,分出很多虚词被停止词表过滤造成),也就是说,lsi+tfidf模型对词细粒度大、分词少的分词器不友好,所以最后hanlp出错率更大。
jieba与hanlp都是很不错的分词器,结巴使用更方便。hanlp准确度要高一些(感觉),而且与文中提到的词向量相匹配。
(我免贵姓AI,jieba:我免/贵姓/AI,hanlp:我/免/贵姓/AI,实际:我/免贵/姓AI)
NLP自然语言处理中的hanlp分词实例的更多相关文章
- Hanlp分词实例:Java实现TFIDF算法
算法介绍 最近要做领域概念的提取,TFIDF作为一个很经典的算法可以作为其中的一步处理. 关于TFIDF算法的介绍可以参考这篇博客http://www.ruanyifeng.com/blog/2013 ...
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...
- 自然语言处理中的N-Gram模型
N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理.另外一方面,N-Gram的另外一个作用是 ...
- NLP自然语言处理 jieba中文分词,关键词提取,词性标注,并行分词,起止位置,文本挖掘,NLP WordEmbedding的概念和实现
1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以 ...
- zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...
- (转)注意力机制(Attention Mechanism)在自然语言处理中的应用
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html 近年来,深度 ...
- 注意力机制(Attention Mechanism)在自然语言处理中的应用
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了 ...
- 自然语言处理中的自注意力机制(Self-attention Mechanism)
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...
- (zhuan) 自然语言处理中的Attention Model:是什么及为什么
自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model( ...
随机推荐
- mac下python2.7升级到3.6
1. 前言 Mac系统自带python2.7,本文目的是将自带的python升级到3.6版本. 网上有本多的做法是让python2.7和python3.X两个版本共存,博主并不知道,是两版本共存好,还 ...
- VTP管理交换机的VLAN配置
实验要求:将Switch1设置为VTPserver.Switch2设置为VTPtransparent.Swtich3和4设置为VTPclient 拓扑如下: 涉及内容: 1.VTP的创建 2.VTP的 ...
- Oracle client安装教程
一.下载 下载地址:http://download.csdn.net/detail/qq_35624642/9773986 这是Oracle Instant Client的CSDN下载地址. 要注意第 ...
- js--单例设计模式
通过闭包方法实现: var creatE=(function(){ var obj; return function(){ if(!obj){ } reutrn obj; } })();//自调用 c ...
- scrapt中的数据提取,采用js2xml库
这个一个爬去美团的例子,应为数据都是在script中,小心封ip,尽量少运行. 先导入库几个库 import requests from bs4 import BeautifulSoup from l ...
- HBase使用压缩存储(snappy)
在将mysql数据导入到hbase数据的过程中,发现hbase的数据容量增加很快, 原本在mysql存储30G容量的数据导入到hbase一直增加到快150G(还未完全导入,手动结束), 而采用默认3个 ...
- CF446 (Div. 1)简单题解
A .DZY Loves Sequences pro:给定长度为N的序列,你最多可以改变一个数的值,问最长严格上升子序列长度. N<1e5. sol:分几种情况,一种的不改变: 一种是改变,然后 ...
- 【转】【计算机视觉】opencv靶标相机姿态解算2 根据四个特征点估计相机姿态 及 实时位姿估计与三维重建相机姿态
https://blog.csdn.net/kyjl888/article/details/71305149
- POJ3070 Fibonacci(矩阵快速幂加速递推)【模板题】
题目链接:传送门 题目大意: 求斐波那契数列第n项F(n). (F(0) = 0, F(1) = 1, 0 ≤ n ≤ 109) 思路: 用矩阵乘法加速递推. 算法竞赛进阶指南的模板: #includ ...
- 软工实践——结对作业2【wordCount进阶需求】
附录: 队友的博客链接 本次作业的博客链接 同名仓库项目地址 一.具体分工 我负责撰写爬虫爬取信息以及代码整合测试,队友子恒负责写词组词频统计功能的代码. 二.PSP表格 PSP2.1 Persona ...