[Leetcode] Unique binary search trees 唯一二叉搜索树

Unique Binary Search Trees leetcode java

描述

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

解析

递归

思路:空树和只有根节点时,也为BST。对于一点i,当其为根节点时,左子树的节点的个数为i-1,(为1,...i-1),右子树的个数为n-i(为,i+1,...n)。对一个根来说,唯一二叉树的个数为左子树结点的个数乘以右子树的个数。而根节点可以从1到n 中选择。

可行的二叉查找树的数量,其实二叉查找树可以任意取根,只要满足中序遍历有序的要求就可以。从处理子问题的角度来看,选取一个结点为根,就把结点切成左右子树,以这个结点为根的可行二叉树数量就是左右子树可行二叉树数量的乘积,所以总的数量是将以所有结点为根的可行结果累加起来。

动态规划

这是Catalan Number卡特兰数的一个例子。卡特兰数的的递推公式:

根据图示

以1为根的树有几个,完全取决于有二个元素的子树有几种。同理,2为根的子树取决于一个元素的子树有几个。以3为根的情况,则与1相同。

定义Count[i] 为以[0,i]能产生的Unique Binary Tree的数目,

如果数组为空,毫无疑问,只有一种BST,即空树,
    Count[0] =1

如果数组仅有一个元素{1},只有一种BST,单个节点
    Count[1] = 1

如果数组有两个元素{1,2}, 那么有如下两种可能
    1                       2
     \                    /
       2                1
    Count[2] = Count[0] * Count[1]   (1为根的情况)
                  + Count[1] * Count[0]  (2为根的情况。

再看一遍三个元素的数组,可以发现BST的取值方式如下:
    Count[3] = Count[0]*Count[2]  (1为根的情况)
                  + Count[1]*Count[1]  (2为根的情况)
                  + Count[2]*Count[0]  (3为根的情况)

所以,由此观察,可以得出Count的递推公式为
    Count[i] = ∑ Count[0...k] * [ k+1....i]     0<=k<i-1
    问题至此划归为一维动态规划。

[Note]
    这是很有意思的一个题。刚拿到这题的时候,完全不知道从那下手,因为对于BST是否Unique,很难判断。最后引入了一个条件以后,立即就清晰了,即
    当数组为 1,2,3,4,.. i,.. n时,基于以下原则的BST建树具有唯一性:
   以i为根节点的树,其左子树由[1, i-1]构成, 其右子树由[i+1, n]构成。

维护量res[i]表示含有i个结点的二叉查找树的数量。

根据上述递推式依次求出1到n的的结果即可。

用一个数组保存 1 至 n-1 对应的不同二叉树的个数 X1、X2、X3、... Xn-1

则 n 对应的不同二叉树个数Xn = Xn-1 + X1*Xn-2 + X2*Xn-3 + X3*Xn-4 + ... + Xn-2*X1 + Xn-1

通过这个递推式,我们可以从 N = 1 开始递推,最后得到 N = n 时不同二叉查找树的个数。

时间上每次求解i个结点的二叉查找树数量的需要一个i步的循环,总体要求n次,所以总时间复杂度是O(1+2+...+n)=O(n^2)。空间上需要一个数组来维护,并且需要前i个的所有信息,所以是O(n)。

代码

递归

class Solution {
public int numTrees(int n) {
if (n == 0 || n == 1) {
return 1;
}
int sum = 0;
for(int i = 1; i <= n; ++i) {
sum += numTrees(i - 1) * numTrees(n - i);
}
return sum;
}
}

动态规划

class Solution {
public int numTrees(int n) {
if (n <= 0)
return 0;
int[] res = new int[n + 1];
res[0] = 1;
res[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 0; j < i; j++) {
res[i] += res[j] * res[i - j - 1];
}
}
return res[n];
}
}

[LeetCode] 96. Unique Binary Search Trees(给定一个数字n,有多少个唯一二叉搜索树) ☆☆☆的更多相关文章

  1. [leetcode]96. Unique Binary Search Trees给定节点形成不同BST的个数

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Input: ...

  2. [LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  4. 52. leetcode 96. Unique Binary Search Trees

    96. Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) tha ...

  5. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  6. [LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example ...

  7. leetcode 96 Unique Binary Search Trees ----- java

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  8. Java [Leetcode 96]Unique Binary Search Trees

    题目描述: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For ...

  9. [leetcode] 96 Unique Binary Search Trees (Medium)

    原题 字母题 思路: 一开始妹有一点思路,去查了二叉查找树,发现有个叫做卡特兰数的东西. 1.求可行的二叉查找树的数量,只要满足中序遍历有序. 2.以一个结点为根的可行二叉树数量就是左右子树可行二叉树 ...

随机推荐

  1. Python3简单爬虫抓取网页图片

    现在网上有很多python2写的爬虫抓取网页图片的实例,但不适用新手(新手都使用python3环境,不兼容python2), 所以我用Python3的语法写了一个简单抓取网页图片的实例,希望能够帮助到 ...

  2. 实现一个键对应多个值的字典(multidict)

    一个字典就是一个键对应一个单值的映射.如果你想要一个键映射多个值,那么你就需要将这多个值放到另外的容器中, 比如列表或者集合里面.比如,你可以像下面这样构造这样的字典: d = { , , ], , ...

  3. js常见知识点2.面向对象相关

    一.对象的概念 建议回复: 对象是一个整体,对外提供一些功能. 一切具有属性和方法的事物. 一切具有本质特征和行为的物质. 数据类型:       所有的基本数据类型都没有属性和方法.       所 ...

  4. Spring Boot的@SpringBootApplication无法引入的问题

    转自:https://blog.csdn.net/cckevincyh/article/details/78962002 今天搭建了springboot,一开始遇到了一个问题,在自己创建的HelloA ...

  5. Python Selenium unittest+HTMLTestRunner实现 自动化测试及发送测试报告邮件

    1.UI测试框架搭建-目录结构 2. 文件介绍 2.1.baseinfo->__init__.py 配置文件定义基础参数 #-*-coding:utf-8-*- #测试用例配置参数 base_u ...

  6. 20165327 2017-2018-2 《Java程序设计》第8周学习总结

    20165327 2017-2018-2 <Java程序设计>第8周学习总结 教材内容总结 第十二章 (一)教材学习内容总结 线程是比进程更小的执行单位.一个进程在其执行过程中,可以产生多 ...

  7. English trip V1 - B 6.Where Are You From? Teacher:Patrick Key: 一般疑问句和否定句中的be动词

    In this lesson you will learn to talk about countries and languages.  本节课你将学习到关于谈论城市和语言 课上内容(Lesson) ...

  8. p1467 Runaround Numbers

    直接搜就行. #include <iostream> #include <cstdio> #include <cmath> #include <algorit ...

  9. 宽度优先搜索BFS(Breadth-First-Search)

    Breadth-First-Search 1. 与DFS的异同 相同点:搜索所有可能的状态. 不同点:搜索顺序. 2. BFS总是先搜索距离初始状态近的状态,它是按照:开始状态->只需一次转移就 ...

  10. json -- dump load dumps loads 简单对比

    json.dumps是将一个Python数据类型列表进行json格式的编码解析, 示例如下: >>> import json #导入python 中的json模块>>&g ...