描述

一日,崔克茜来到小马镇表演魔法。

其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它。初始时,崔克茜将会随机地选择 k 个盒子用魔法将它们打开。崔克茜想知道最后所有盒子都被打开的概率,你能帮助她回答这个问题吗?

输入

第一行一个整数 T (T ≤ 100)表示数据组数。 对于每组数据,第一行有两个整数 n 和 k (1 ≤ n ≤ 300, 0 ≤ k ≤ n)。 第二行有 n 个整数 ai,表示第 i 个盒子中,装有可以打开第 ai 个盒子的钥匙。

输出

对于每组询问,输出一行表示对应的答案。要求相对误差不超过四位小数。

样例输入
4
5 1
2 5 4 3 1
5 2
2 5 4 3 1
5 3
2 5 4 3 1
5 4
2 5 4 3 1
样例输出
0.000000000
0.600000000
0.900000000
1.000000000
 对于每个盒子而言有且仅有一把钥匙能打开它意味着这是若干个简单环,只需要每个环。
那么我们可以DP,设f[i][j]表示前i个环满足条件且已选了j个的方案。状态转移时需要得到组合数。
或许你会问会爆精度怎么办,因为求的是概率只需用double或long double保存就行了。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
const int maxn=;
int n,k,size[maxn],cnt,v[maxn],vis[maxn];
double f[maxn][maxn],C[maxn][maxn];
int main() {
int T=read();
C[][]=;
rep(i,,) rep(j,,i) C[i+][j+]+=C[i][j],C[i+][j]+=C[i][j];
while(T--) {
n=read();k=read();cnt=;
memset(size,,sizeof(size));
memset(vis,,sizeof(vis));
rep(i,,n) v[i]=read();
rep(i,,n) if(!vis[i]) {
cnt++;int j=i;
do size[cnt]++,vis[j]=,j=v[j];while(j!=i);
}
memset(f,,sizeof(f));
f[][]=1.0;int cur=;
rep(i,,cnt) {
rep(j,,cur) rep(k0,,size[i]) f[i+][j+k0]+=f[i][j]*C[size[i]][k0];
cur+=size[i];
}
printf("%.6lf\n",f[cnt+][k]/C[n][k]);
}
return ;
}

#1075 : 开锁魔法III的更多相关文章

  1. hihocoder 1075 : 开锁魔法III

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  2. Hiho #1075: 开锁魔法III

    Problem Statement 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜 ...

  3. HihoCoder 1075 开锁魔法III(概率DP+组合)

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  4. hihoCode 1075 : 开锁魔法III

    时间限制:6000ms 单点时限:1000ms 内存限制:256MB 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅 ...

  5. hrb——开锁魔法I——————【规律】

    解题思路:从1到n的倒数之和. #include<stdio.h> #include<string.h> #include<algorithm> using nam ...

  6. hihocoder1075【开锁魔法】

    hihocoder1075[开锁魔法] 题意是给你一个 \(1-n\) 的置换,求选 \(k\) 个可以遍历所有点的概率. 题目可以换个模型:有 \(n\) 个球,有 \(cnt\) 种不同的颜色,求 ...

  7. BZOJ 5004: 开锁魔法II 期望 + 组合

    Description 题面:www.lydsy.com/JudgeOnline/upload/task.pdf Input Output 一般概率题有两种套路: 满足条件的方案/总方案. 直接求概率 ...

  8. bzoj5003: 与链 5004: 开锁魔法II 5005:乒乓游戏

    www.lydsy.com/JudgeOnline/upload/task.pdf 第一题题意可以转为选一个长度k的序列,每一项二进制的1的位置被下一项包含,且总和为1,考虑每个二进制位的出现位置,可 ...

  9. 【bzoj5004】开锁魔法II 组合数学+概率dp

    题目描述 有 $n$ 个箱子,每个箱子里有且仅有一把钥匙,每个箱子有且仅有一把钥匙可以将其打开.现在随机打开 $m$ 个箱子,求能够将所有箱子打开的概率. 题解 组合数学+概率dp 题目约定了每个点的 ...

随机推荐

  1. UML和模式应用5:细化阶段(10)---UML交互图

    1.前言 UML使用交互图来描述对象间消息的交互 交互图可以用于动态对象建模. 交互图有两种类型:顺序图和通信图. UML交互图将用来解释和阐述对象设计. 2.顺序图和通信图 顺序图具有丰富的符号标记 ...

  2. svn的常用命令

    svn :看log.版本库.增删.提交 (1)svn up //代码更新到最新版本. (2)svn checkout //将代码checkout出来. (3)svn revert -R ./ //将代 ...

  3. oracle instantclient_11_2 配置文件tnsnames.ora

    文件所在位置(不同版本位置可能不同): oracle\product\10.2.0\client_1\NETWORK\ADMIN\tnsnames.ora WDDB = (DESCRIPTION = ...

  4. dell R720服务器设置开机启动顺序

    开机按F2进入系统启动设置,也可以按F11进入快速启动配置

  5. GitHub上优秀的Go开源项目

    近一年来,学习和研究Go语言,断断续续的收集了一些比较优秀的开源项目,这些项目都非常不错,可以供我们学习和研究Go用,从中可以学到很多关于Go的使用.技巧以及相关工具和方法.我把他们整理发出来,大家有 ...

  6. Java用四种方法实现阶乘n! (factorial)

    1. 引言 实现阶乘的方法很多,这边介绍四种方法,分别是递归,尾递归,循环和BigDecimal. 2. 代码 public class Test { public static void main( ...

  7. python 全栈开发,Day130(多玩具端的遥控功能, 简单的双向聊天,聊天记录存放数据库,消息提醒,玩具主动发起消息,玩具主动发起点播)

    先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.3.zip 注意:由于涉及到 ...

  8. 使用匿名内部类调用start方法

    package chapter03;//类实现接口public class WD implements Runnable{//重写接口的方法 @Override public void run() { ...

  9. Oracle GoldenGate常用配置端口

    1 简介 Oracle Golden Gate软件是一种基于日志的结构化数据复制备份软件,它通过解析源数据库在线日志或归档日志获得数据的增量变化,再将这些变化应用到目标数据库,从而实现源数据库与目标数 ...

  10. [转] 由Request Method:OPTIONS初窥CORS

    刚接触前端的时候,以为HTTP的Request Method只有GET与POST两种,后来才了解到,原来还有HEAD.PUT.DELETE.OPTIONS…… 目前的工作中,HEAD.PUT.DELE ...