【原】关于使用Sklearn进行数据预处理 —— 缺失值(Missing Value)处理
关于缺失值(missing value)的处理
在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。
首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。
使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:
|
1
2
3
4
5
6
7
8
|
>>> type(np.NaN)<type 'float'>>>> type(np.nan)<type 'float'>>>> np.NaNnan>>> np.nannan |
因此,如果要进行处理的数据集中包含缺失值一般步骤如下:
1、使用字符串'nan'来代替数据集中的缺失值;
2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;
3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。
代码如下:
|
1
2
3
4
5
6
7
8
9
10
|
>>> from sklearn.preprocessing import Imputer>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)>>> X=np.array([[1, 2], [np.nan, 3], [7, 6]])>>> Y=[[np.nan, 2], [6, np.nan], [7, 6]]>>> imp.fit(X)Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)>>> imp.transform(Y)array([[ 4. , 2. ], [ 6. , 3.66666667], [ 7. , 6. ]]) |
上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。
当然也可以使用imp对象来对X数组本身进行处理。
通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:
|
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> line='1,?'>>> line=line.replace(',?',',nan')>>> line'1,nan'>>> Z=line.split(',')>>> Z['1', 'nan']>>> Z=np.array(Z,dtype=float)>>> Zarray([ 1., nan])>>> imp.transform(Z)array([[ 1. , 3.66666667]]) |
上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。
【原】关于使用Sklearn进行数据预处理 —— 缺失值(Missing Value)处理的更多相关文章
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 【Sklearn系列】使用Sklearn进行数据预处理
这篇文章主要讲解使用Sklearn进行数据预处理,我们使用Kaggle中泰坦尼克号事件的数据作为样本. 读取数据并创建数据表格,查看数据相关信息 import pandas as pd import ...
- Python: sklearn库——数据预处理
Python: sklearn库 —— 数据预处理 数据集转换之预处理数据: 将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化. 原因:数据集的标准化(服从均值为 ...
- 【sklearn】数据预处理 sklearn.preprocessing
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...
- [Scikit-Learn] - 数据预处理 - 缺失值(Missing Value)处理
reference : http://www.cnblogs.com/chaosimple/p/4153158.html 关于缺失值(missing value)的处理 在sklearn的prepro ...
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...
- sklearn preprocessing 数据预处理(OneHotEncoder)
1. one hot encoder sklearn.preprocessing.OneHotEncoder one hot encoder 不仅对 label 可以进行编码,还可对 categori ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
随机推荐
- 使用soureTree删除分支
使用心得 1:使用pull拉取时,自己本地的更改不会覆盖掉 2:删除分枝时,直接选中,可以直接删除远程的分枝
- JS打印页面
打印 整个html页面(PS:样式要写在页面里面才能打印(就是用内部样式)) <a id="dayi" runat="server ...
- Selenium2+python自动化10-登录案例
前言 前面几篇都是讲一些基础的定位方法,没具体的案例,小伙伴看起来比较枯燥,有不少小伙伴给小编提建议以后多出一些具体的案例.本篇就是拿部落论坛作为测试项目,写一个简单的登录测试脚本. 在写登录脚本的时 ...
- 爬虫--scrapy--windows上安装
关于scrapy的安装网上有一大把教程,但是比较麻烦,各种包----------,这里给大家介绍一款神器: 下载地址:http://continuum.io/downloads 根据自己电脑的系统选择 ...
- iconv命令 gbk 转 UTF-8
-----linux gbk 转 UTF-8-------- iconv 用法 iconv -f "gbk" -t "utf-8" < infile &g ...
- 前端开发必备! 20 个强大的 Sublime Text 插件
http://www.oschina.net/translate/20-powerful-sublimetext-plugins http://www.w3cplus.com/tools/emmet- ...
- [转]AS3复制可视对象
一,复制舞台上的影片剪 方法1——反射方法: var ClassRef:Class = getDefinitionByName(getQualifiedClassName(t_mc)) as Clas ...
- T60上安装Gentoo笔记
T60虽然已经很老了,也过了服役期限.但是从入手之后,相比与家里放着的几个其他的高配置"后辈",依然是手中的挚爱.4:3的屏幕,方方正正的内敛模型,很结实的钢筋铁骨,无论是性格还是 ...
- centos6搭建VPN
1,检查是否开启PPP #cat /dev/ppp cat: /dev/ppp: No such device or address //表示已经开启 2,安装ppp和iptables #yum in ...
- [Shell]条件判断与流程控制:if, case, for, while, until
---------------------------------------------------------------------------------------------------- ...