关于缺失值(missing value)的处理

在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理。

首先需要说明的是,numpy的数组中可以使用np.nan/np.NaN(Not A Number)来代替缺失值,对于数组中是否存在nan可以使用np.isnan()来判定。

使用type(np.nan)或者type(np.NaN)可以发现改值其实属于float类型,代码如下:

1
2
3
4
5
6
7
8
>>> type(np.NaN)
<type 'float'>
>>> type(np.nan)
<type 'float'>
>>> np.NaN
nan
>>> np.nan
nan

因此,如果要进行处理的数据集中包含缺失值一般步骤如下:

1、使用字符串'nan'来代替数据集中的缺失值;

2、将该数据集转换为浮点型便可以得到包含np.nan的数据集;

3、使用sklearn.preprocessing.Imputer类来处理使用np.nan对缺失值进行编码过的数据集。

代码如下:

1
2
3
4
5
6
7
8
9
10
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> X=np.array([[1, 2], [np.nan, 3], [7, 6]])
>>> Y=[[np.nan, 2], [6, np.nan], [7, 6]]
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> imp.transform(Y)
array([[ 4.        2.        ],
       [ 6.        3.66666667],
       [ 7.        6.        ]])

上述代码使用数组X去“训练”一个Imputer类,然后用该类的对象去处理数组Y中的缺失值,缺失值的处理方式是使用X中的均值(axis=0表示按列进行)代替Y中的缺失值。

当然也可以使用imp对象来对X数组本身进行处理。

通常,我们的数据都保存在文件中,也不一定都是Numpy数组生成的,因此缺失值可能不一定是使用nan来编码的,对于这种情况可以参考以下代码:

1
2
3
4
5
6
7
8
9
10
11
12
>>> line='1,?'
>>> line=line.replace(',?',',nan')
>>> line
'1,nan'
>>> Z=line.split(',')
>>> Z
['1', 'nan']
>>> Z=np.array(Z,dtype=float)
>>> Z
array([  1.,  nan])
>>> imp.transform(Z)
array([[ 1.        3.66666667]])

上述代码line模拟从文件中读取出来的一行数据,使用nan来代替原始数据中的缺失值编码,将其转换为浮点型,然后使用X中的均值填补Z中的缺失值。

【原】关于使用Sklearn进行数据预处理 —— 缺失值(Missing Value)处理的更多相关文章

  1. 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  2. 【Sklearn系列】使用Sklearn进行数据预处理

    这篇文章主要讲解使用Sklearn进行数据预处理,我们使用Kaggle中泰坦尼克号事件的数据作为样本. 读取数据并创建数据表格,查看数据相关信息 import pandas as pd import ...

  3. Python: sklearn库——数据预处理

    Python: sklearn库 —— 数据预处理 数据集转换之预处理数据:      将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化.      原因:数据集的标准化(服从均值为 ...

  4. 【sklearn】数据预处理 sklearn.preprocessing

    数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...

  5. [Scikit-Learn] - 数据预处理 - 缺失值(Missing Value)处理

    reference : http://www.cnblogs.com/chaosimple/p/4153158.html 关于缺失值(missing value)的处理 在sklearn的prepro ...

  6. 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  7. 使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...

  8. sklearn preprocessing 数据预处理(OneHotEncoder)

    1. one hot encoder sklearn.preprocessing.OneHotEncoder one hot encoder 不仅对 label 可以进行编码,还可对 categori ...

  9. 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值

    缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...

随机推荐

  1. 如何在A用户下建立视图,这个视图是A的表与B的表进行关联的?

    这个前提条件是,同一个数据库,不同用户!!!如果是不同数据库,就要用dblink了 一开始,我直接创建视图,但是提示“权限不足”: 于是我是用A登陆,直接用select * from B.sa_tas ...

  2. rotate the clock

    A program test: You are given N round clocks. Every clock has M hands, and these hands can point to ...

  3. Adobe Dreamweaver(DW)

    下载破解版地址:http://www.frontopen.com/1179.html 详情地址:http://baike.baidu.com/link?url=8Jv88BJ-wXeyABAbYEMl ...

  4. iOS的设备及分辨率、图片命名

    iOS的设备及分辨率(iPhone竖屏/iPad横屏) 设备 分辨率 横宽比 iPhone 3GS.iPod Touch第三代 320 * 480 2 : 3 iPhone 4.iPod Touch第 ...

  5. javascript this

    最近看了很多人的微博,主要是“追梦子”的微博,总结了一下.希望大家多多指点. 1. 没有new this的指向问题   this的指向在函数创建的时候是决定不了的,在调用的时候才能决定,谁调用的就指向 ...

  6. 揭开HTTP网络协议神秘面纱系列(三)

    HTTP首部字段有四种类型:通用首部字段,请求首部字段,响应首部字段,实体首部字段. 通用首部字段: 首部字段 说明 Cache-Control 控制缓存的行为 Connection 逐跳首部.连接的 ...

  7. Jmeter应用初步介绍

    一.工具介绍 Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域. 它可以用于测试静态和动态资 ...

  8. iscsi: 环境搭建

    组网环境 +----------+---------------+---------------+ | hostname | ip address | iscsi role | +---------- ...

  9. highcharts 使用实例

    后端使用django实现,返回的数据可以修改为从数据库获取或其他方式获取,实例里是写死的数据. urls配置: url(r'^outip/chart/$', views.charts), url(r' ...

  10. quartus使用笔记

    quartus中默认顶层文件名与工程名相同,或自行设置顶层文件:project->set as top-leval entity 顶层模块名要与工程名相同 RTL是编译后的结果,并没有与实际的硬 ...