c++实现mlp神经网络
之前一直用theano训练样本,最近需要转成c或c++实现。在网上参考了一下其它代码,还是喜欢c++。但是看了几份cpp代码之后,发现都多少有些bug,很不爽。由于本人编码能力较弱,还花了不少时间改正。另外又添加了写权值和读权值的功能,可以保存训练的结果。下面是代码实现的基本功能描述。
问题描述:
用cpp重写mlp,即普通的多层神经网络。需要实现多个隐藏层与输出层互连,分类层采用softmax分类。
测试例子:
测试例子为自己构造,将3位二进制转为10进制有8中可能,我分别让它们对应label0-7。例如:001对应的label为1,111对应的label为7,以此类推
下面看代码:
main.cpp
#include <iostream>
#include "NeuralNetwork.h"
#include "util.h"
using namespace std;
/*main函数中调用的两个函数功能一样
*将3位二进制分类成十进制
*test_lr用的是单层的softmax回归
*mlp是含有多个隐藏层的神经网络
*/
int main()
{
cout << "****softmax****" << endl;
test_lr();
cout << "****mlp****" << endl;
mlp();
return 0;
}
test_lr函数为softmax测试,先看它的相关文件
LogisticRegression.h
#ifndef LOGISTICREGRESSIONLAYER
#define LOGISTICREGRESSIONLAYER class LogisticRegression
{
public:
LogisticRegression(int n_i, int i_o, int);
~LogisticRegression(); void forward_propagation(double* input_data);
void back_propagation(double* input_data, double* label, double lr);
void softmax(double* x);
void printwb();
void writewb(const char *pcname);
long readwb(const char *pcname, long);
void setwb(double ppdw[][3], double [8]);
void train(double *x, double *y, double lr); int predict(double *);
double cal_error(double **ppdtest, double* pdlabel, int ibatch);
//double cal_error(double* label);
void makeLabels(int* pimax, double (*pplabels)[8]); //本层前向传播的输出值,也是最终的预测值
double* output_data;
//反向传播时所需值
double* delta; public:
int n_in;
int n_out;
int n_train;
double** w;
double* b; }; void test_lr();
void testwb();
#endif
头文件中的testwb为测试权值的读写而测试的,可以先不用理会
LogisticRegression.cpp
#include <cmath>
#include <ctime>
#include <iostream>
#include "LogisticRegression.h"
#include "util.h" using namespace std; LogisticRegression::LogisticRegression(int n_i, int n_o, int n_t)
{
n_in = n_i;
n_out = n_o;
n_train = n_t; w = new double* [n_out];
for(int i = 0; i < n_out; ++i)
{
w[i] = new double [n_in];
}
b = new double [n_out]; double a = 1.0 / n_in; srand((unsigned)time(NULL));
for(int i = 0; i < n_out; ++i)
{
for(int j = 0; j < n_in; ++j)
w[i][j] = uniform(-a, a);
b[i] = uniform(-a, a);
} delta = new double [n_out];
output_data = new double [n_out];
} LogisticRegression::~LogisticRegression()
{
for(int i=0; i < n_out; i++)
delete []w[i];
delete[] w;
delete[] b;
delete[] output_data;
delete[] delta;
} void LogisticRegression::printwb()
{
cout << "'****w****\n";
for(int i = 0; i < n_out; ++i)
{
for(int j = 0; j < n_in; ++j)
cout << w[i][j] << ' ';
cout << endl;
//w[i][j] = uniform(-a, a);
}
cout << "'****b****\n";
for(int i = 0; i < n_out; ++i)
{
cout << b[i] << ' ';
}
cout << endl;
cout << "'****output****\n";
for(int i = 0; i < n_out; ++i)
{
cout << output_data[i] << ' ';
}
cout << endl; }
void LogisticRegression::softmax(double* x)
{
double _max = 0.0;
double _sum = 0.0; for(int i = 0; i < n_out; ++i)
{
if(_max < x[i])
_max = x[i];
}
for(int i = 0; i < n_out; ++i)
{
x[i] = exp(x[i]-_max);
_sum += x[i];
} for(int i = 0; i < n_out; ++i)
{
x[i] /= _sum;
}
} void LogisticRegression::forward_propagation(double* input_data)
{
for(int i = 0; i < n_out; ++i)
{
output_data[i] = 0.0;
for(int j = 0; j < n_in; ++j)
{
output_data[i] += w[i][j]*input_data[j];
}
output_data[i] += b[i];
} softmax(output_data);
} void LogisticRegression::back_propagation(double* input_data, double* label, double lr)
{
for(int i = 0; i < n_out; ++i)
{
delta[i] = label[i] - output_data[i] ;
for(int j = 0; j < n_in; ++j)
{
w[i][j] += lr * delta[i] * input_data[j] / n_train;
}
b[i] += lr * delta[i] / n_train;
}
} int LogisticRegression::predict(double *x)
{
forward_propagation(x);
cout << "***result is ***" << endl;
int iresult = getMaxIndex(output_data, n_out);
cout << iresult << endl;
if (iresult == 1)
printArr(output_data, n_out);
return iresult; }
void LogisticRegression::train(double *x, double *y, double lr)
{
forward_propagation(x);
back_propagation(x, y, lr);
}
//这个函数目前还用不到,大家不用看
double LogisticRegression::cal_error(double **ppdtest, double* pdlabel, int ibatch)
{
double error = 0.0, dmax = 0;
int imax = -1, ierrNum = 0;
for (int i = 0; i < ibatch; ++i)
{
imax = predict(ppdtest[i]);
if (imax != pdlabel[i])
++ierrNum;
}
error = (double)ierrNum / ibatch;
return error;
}
void LogisticRegression::writewb(const char *pcname)
{
savewb(pcname, w, b, n_out, n_in);
}
long LogisticRegression::readwb(const char *pcname, long dstartpos)
{
return loadwb(pcname, w, b, n_out, n_in, dstartpos);
} void LogisticRegression::setwb(double ppdw[][3], double szib[8])
{
for (int i = 0; i < n_out; ++i)
{
for (int j = 0; j < n_in; ++j)
w[i][j] = ppdw[i][j];
b[i] = szib[i];
}
cout << "setwb----------" << endl;
printArrDouble(w, n_out, n_in);
printArr(b, n_out);
} void LogisticRegression::makeLabels(int* pimax, double (*pplabels)[8])
{
for (int i = 0; i < n_train; ++i)
{
for (int j = 0; j < n_out; ++j)
pplabels[i][j] = 0;
int k = pimax[i];
pplabels[i][k] = 1.0;
}
} void test_lr()
{
srand(0); double learning_rate = 0.1;
double n_epochs = 200; int test_N = 2;
const int trainNum = 8, n_in = 3, n_out = 8;
//int n_out = 2;
double train_X[trainNum][n_in] = {
{1, 1, 1},
{1, 1, 0},
{1, 0, 1},
{1, 0, 0},
{0, 1, 1},
{0, 1, 0},
{0, 0, 1},
{0, 0, 0}
};
//szimax存储的是最大值的下标
int szimax[trainNum];
for (int i = 0; i < trainNum; ++i)
szimax[i] = trainNum - i - 1;
double train_Y[trainNum][n_out]; // construct LogisticRegression
LogisticRegression classifier(n_in, n_out, trainNum); classifier.makeLabels(szimax, train_Y);
// train online
for(int epoch=0; epoch<n_epochs; epoch++) {
for(int i=0; i<trainNum; i++) {
//classifier.trainEfficient(train_X[i], train_Y[i], learning_rate);
classifier.train(train_X[i], train_Y[i], learning_rate);
}
} const char *pcfile = "test.wb";
classifier.writewb(pcfile); LogisticRegression logistic(n_in, n_out, trainNum);
logistic.readwb(pcfile, 0);
// test data
double test_X[2][n_out] = {
{1, 0, 1},
{0, 0, 1}
};
// test
cout << "before readwb ---------" << endl;
for(int i=0; i<test_N; i++) {
classifier.predict(test_X[i]);
cout << endl;
}
cout << "after readwb ---------" << endl;
for(int i=0; i<trainNum; i++) {
logistic.predict(train_X[i]);
cout << endl;
}
cout << "*********\n"; }
void testwb()
{ int test_N = 2;
const int trainNum = 8, n_in = 3, n_out = 8;
//int n_out = 2;
double train_X[trainNum][n_in] = {
{1, 1, 1},
{1, 1, 0},
{1, 0, 1},
{1, 0, 0},
{0, 1, 1},
{0, 1, 0},
{0, 0, 1},
{0, 0, 0}
};
double szib[n_out] = {1, 2, 3, 3, 3, 3, 2, 1}; // construct LogisticRegression
LogisticRegression classifier(n_in, n_out, trainNum); classifier.setwb(train_X, szib); const char *pcfile = "test.wb";
classifier.writewb(pcfile); LogisticRegression logistic(n_in, n_out, trainNum);
logistic.readwb(pcfile, 0); }
下面是mlp神经网络组合起来的代码,这个就是将隐藏层与softmax层互连,当时调试了好久好久。。。
NeuralNetwork.h
#ifndef NEURALNETWORK_H
#define NEURALNETWORK_H #include "HiddenLayer.h"
#include "LogisticRegression.h" class NeuralNetwork
{
public:
NeuralNetwork(int n, int n_i, int n_o, int nhl, int*hls);
~NeuralNetwork(); void train(double** in_data, double** in_label, double lr, int epochs);
void predict(double** in_data, int n); void writewb(const char *pcname);
void readwb(const char *pcname); private:
int N; //样本数量
int n_in; //输入维数
int n_out; //输出维数
int n_hidden_layer; //隐层数目
int* hidden_layer_size; //中间隐层的大小 e.g. {3,4}表示有两个隐层,第一个有三个节点,第二个有4个节点 HiddenLayer **sigmoid_layers;
LogisticRegression *log_layer;
}; void mlp(); #endif
mlp()就是测试整个神经网络基本功能的代码,写的比较乱。基本就是先用一个mlp训练,然后保存权值。之后另一个mlp读取权值,预测结果。
NeuralNetwork.cpp
#include <iostream>
#include "NeuralNetwork.h"
#include "util.h"
//#include "HiddenLayer.h"
//#include "LogisticRegression.h" using namespace std; const int n_train = 8, innode = 3, outnode = 8;
NeuralNetwork::NeuralNetwork(int n, int n_i, int n_o, int nhl, int *hls)
{
N = n;
n_in = n_i;
n_out = n_o; n_hidden_layer = nhl;
hidden_layer_size = hls; //构造网络结构
sigmoid_layers = new HiddenLayer* [n_hidden_layer];
for(int i = 0; i < n_hidden_layer; ++i)
{
if(i == 0)
{
sigmoid_layers[i] = new HiddenLayer(n_in, hidden_layer_size[i]);//第一个隐层
}
else
{
sigmoid_layers[i] = new HiddenLayer(hidden_layer_size[i-1], hidden_layer_size[i]);//其他隐层
}
} log_layer = new LogisticRegression(hidden_layer_size[n_hidden_layer-1], n_out, N);//最后的softmax层
} NeuralNetwork::~NeuralNetwork()
{
//二维指针分配的对象不一定是二维数组
for(int i = 0; i < n_hidden_layer; ++i)
delete sigmoid_layers[i]; //删除的时候不能加[]
delete[] sigmoid_layers;
//log_layer只是一个普通的对象指针,不能作为数组delete
delete log_layer;//删除的时候不能加[]
} void NeuralNetwork::train(double** ppdinData, double** ppdinLabel, double dlr, int iepochs)
{
printArrDouble(ppdinData, N, n_in); cout << "******label****" << endl;
printArrDouble(ppdinLabel, N, n_out); //反复迭代样本iepochs次训练
for(int epoch = 0; epoch < iepochs; ++epoch)
{
double e = 0.0;
for(int i = 0; i < N; ++i)
{
//前向传播阶段
for(int n = 0; n < n_hidden_layer; ++ n)
{
if(n == 0) //第一个隐层直接输入数据
{
sigmoid_layers[n]->forward_propagation(ppdinData[i]);
}
else //其他隐层用前一层的输出作为输入数据
{
sigmoid_layers[n]->forward_propagation(sigmoid_layers[n-1]->output_data);
}
}
//softmax层使用最后一个隐层的输出作为输入数据
log_layer->forward_propagation(sigmoid_layers[n_hidden_layer-1]->output_data); //e += log_layer->cal_error(ppdinLabel[i]); //反向传播阶段
log_layer->back_propagation(sigmoid_layers[n_hidden_layer-1]->output_data, ppdinLabel[i], dlr); for(int n = n_hidden_layer-1; n >= 1; --n)
{
if(n == n_hidden_layer-1)
{
sigmoid_layers[n]->back_propagation(sigmoid_layers[n-1]->output_data,
log_layer->delta, log_layer->w, log_layer->n_out, dlr, N);
}
else
{
double *pdinputData;
pdinputData = sigmoid_layers[n-1]->output_data; sigmoid_layers[n]->back_propagation(pdinputData,
sigmoid_layers[n+1]->delta, sigmoid_layers[n+1]->w, sigmoid_layers[n+1]->n_out, dlr, N);
}
}
//这里该怎么写?
if (n_hidden_layer > 1)
sigmoid_layers[0]->back_propagation(ppdinData[i],
sigmoid_layers[1]->delta, sigmoid_layers[1]->w, sigmoid_layers[1]->n_out, dlr, N);
else
sigmoid_layers[0]->back_propagation(ppdinData[i],
log_layer->delta, log_layer->w, log_layer->n_out, dlr, N);
}
//if (epoch % 100 == 1)
//cout << "iepochs number is " << epoch << " cost function is " << e / (double)N << endl;
} } void NeuralNetwork::predict(double** ppdata, int n)
{ for(int i = 0; i < n; ++i)
{
for(int n = 0; n < n_hidden_layer; ++ n)
{
if(n == 0) //第一个隐层直接输入数据
{
sigmoid_layers[n]->forward_propagation(ppdata[i]);
}
else //其他隐层用前一层的输出作为输入数据
{
sigmoid_layers[n]->forward_propagation(sigmoid_layers[n-1]->output_data);
}
}
//softmax层使用最后一个隐层的输出作为输入数据
log_layer->predict(sigmoid_layers[n_hidden_layer-1]->output_data);
//log_layer->forward_propagation(sigmoid_layers[n_hidden_layer-1]->output_data);
}
} void NeuralNetwork::writewb(const char *pcname)
{
for(int i = 0; i < n_hidden_layer; ++i)
{
sigmoid_layers[i]->writewb(pcname);
}
log_layer->writewb(pcname); }
void NeuralNetwork::readwb(const char *pcname)
{
long dcurpos = 0, dreadsize = 0;
for(int i = 0; i < n_hidden_layer; ++i)
{
dreadsize = sigmoid_layers[i]->readwb(pcname, dcurpos);
cout << "hiddenlayer " << i + 1 << " read bytes: " << dreadsize << endl;
if (-1 != dreadsize)
dcurpos += dreadsize;
else
{
cout << "read wb error from HiddenLayer" << endl;
return;
}
}
dreadsize = log_layer->readwb(pcname, dcurpos);
if (-1 != dreadsize)
dcurpos += dreadsize;
else
{
cout << "read wb error from sofmaxLayer" << endl;
return;
}
}
//double **makeLabelSample(double **label_x)
double **makeLabelSample(double label_x[][outnode])
{
double **pplabelSample;
pplabelSample = new double*[n_train];
for (int i = 0; i < n_train; ++i)
{
pplabelSample[i] = new double[outnode];
} for (int i = 0; i < n_train; ++i)
{
for (int j = 0; j < outnode; ++j)
pplabelSample[i][j] = label_x[i][j];
}
return pplabelSample;
}
double **maken_train(double train_x[][innode])
{
double **ppn_train;
ppn_train = new double*[n_train];
for (int i = 0; i < n_train; ++i)
{
ppn_train[i] = new double[innode];
} for (int i = 0; i < n_train; ++i)
{
for (int j = 0; j < innode; ++j)
ppn_train[i][j] = train_x[i][j];
}
return ppn_train;
}
void mlp()
{
//输入样本
double X[n_train][innode]= {
{0,0,0},{0,0,1},{0,1,0},{0,1,1},{1,0,0},{1,0,1},{1,1,0},{1,1,1}
}; double Y[n_train][outnode]={
{1, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 0, 0, 1},
};
const int ihiddenSize = 2;
int phidden[ihiddenSize] = {5, 5};
//printArr(phidden, 1);
NeuralNetwork neural(n_train, innode, outnode, ihiddenSize, phidden);
double **train_x, **ppdlabel;
train_x = maken_train(X);
//printArrDouble(train_x, n_train, innode);
ppdlabel = makeLabelSample(Y);
neural.train(train_x, ppdlabel, 0.1, 3500);
cout<<"trainning complete..."<<endl;
//pcname存放权值
const char *pcname = "mlp55new.wb";
neural.writewb(pcname);
NeuralNetwork neural2(n_train, innode, outnode, ihiddenSize, phidden);
cout<<"readwb start..."<<endl;
neural2.readwb(pcname);
cout<<"readwb end..."<<endl;
neural.predict(train_x, n_train);
cout << "----------after readwb________" << endl;
neural2.predict(train_x, n_train); for (int i = 0; i != n_train; ++i)
{
delete []train_x[i];
delete []ppdlabel[i];
}
delete []train_x;
delete []ppdlabel;
cout<<endl;
}
HiddenLayer.h
#ifndef HIDDENLAYER_H
#define HIDDENLAYER_H class HiddenLayer{
public:
HiddenLayer(int n_i, int n_o);
~HiddenLayer(); void forward_propagation(double* input_data); void back_propagation(double *pdinputData, double *pdnextLayerDelta,
double** ppdnextLayerW, int iNextLayerOutNum, double dlr, int N); void writewb(const char *pcname);
long readwb(const char *pcname, long); //本层前向传播的输出值,作为下一层的输入值
double* output_data;
//反向传播时所需值
double* delta; public:
int n_in;
int n_out;
double** w;
double*b;
}; #endif
HiddenLayer.cpp
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include "HiddenLayer.h"
#include "util.h" using namespace std; HiddenLayer::HiddenLayer(int n_i, int n_o)
{
n_in = n_i;
n_out = n_o; w = new double* [n_out];
for(int i = 0; i < n_out; ++i)
{
w[i] = new double [n_in];
}
b = new double [n_out]; double a = 1.0 / n_in; srand((unsigned)time(NULL));
for(int i = 0; i < n_out; ++i)
{
for(int j = 0; j < n_in; ++j)
w[i][j] = uniform(-a, a);
b[i] = uniform(-a, a);
} delta = new double [n_out];
output_data = new double [n_out];
} HiddenLayer::~HiddenLayer()
{
for(int i=0; i<n_out; i++)
delete []w[i];
delete[] w;
delete[] b;
delete[] output_data;
delete[] delta;
}
void HiddenLayer::forward_propagation(double* pdinputData)
{
for(int i = 0; i < n_out; ++i)
{
output_data[i] = 0.0;
for(int j = 0; j < n_in; ++j)
{
output_data[i] += w[i][j]*pdinputData[j];
}
output_data[i] += b[i]; output_data[i] = sigmoid(output_data[i]);
}
} void HiddenLayer::back_propagation(double *pdinputData, double *pdnextLayerDelta,
double** ppdnextLayerW, int iNextLayerOutNum, double dlr, int N)
{
/*
pdinputData 为输入数据
*pdnextLayerDelta 为下一层的残差值delta,是一个大小为iNextLayerOutNum的数组
**ppdnextLayerW 为此层到下一层的权值
iNextLayerOutNum 实际上就是下一层的n_out
dlr 为学习率learning rate
N 为训练样本总数
*/ //sigma元素个数应与本层单元个数一致,而网上代码有误
//作者是没有自己测试啊,测试啊
//double* sigma = new double[iNextLayerOutNum];
double* sigma = new double[n_out];
//double sigma[10];
for(int i = 0; i < n_out; ++i)
sigma[i] = 0.0; for(int i = 0; i < iNextLayerOutNum; ++i)
{
for(int j = 0; j < n_out; ++j)
{
sigma[j] += ppdnextLayerW[i][j] * pdnextLayerDelta[i];
}
}
//计算得到本层的残差delta
for(int i = 0; i < n_out; ++i)
{
delta[i] = sigma[i] * output_data[i] * (1 - output_data[i]);
} //调整本层的权值w
for(int i = 0; i < n_out; ++i)
{
for(int j = 0; j < n_in; ++j)
{
w[i][j] += dlr * delta[i] * pdinputData[j];
}
b[i] += dlr * delta[i];
}
delete[] sigma;
} void HiddenLayer::writewb(const char *pcname)
{
savewb(pcname, w, b, n_out, n_in);
}
long HiddenLayer::readwb(const char *pcname, long dstartpos)
{
return loadwb(pcname, w, b, n_out, n_in, dstartpos);
}
下面是一个工具文件
util.h
#ifndef UTIL_H
#define UTIL_H typedef unsigned char BYTE;
double sigmoid(double x); double uniform(double _min, double _max);
//void printArr(T *parr, int num);
//void printArrDouble(double **pparr, int row, int col);
void initArr(double *parr, int num);
int getMaxIndex(double *pdarr, int num);
void savewb(const char *pcname, double **ppw, double *pb,
int irow, int icol);
long loadwb(const char *pcname, double **ppw, double *pb,
int irow, int icol, long dstartpos);
void readonefile(const char *pcname);
void writeonefile(const char *pcname); template <typename T>
void printArr(T *parr, int num)
{
cout << "****printArr****" << endl; for (int i = 0; i < num; ++i)
cout << parr[i] << ' ';
cout << endl;
}
template <typename T>
void printArrDouble(T **pparr, int row, int col)
{
cout << "****printArrDouble****" << endl;
for (int i = 0; i < row; ++i)
{
for (int j = 0; j < col; ++j)
{
cout << pparr[i][j] << ' ';
}
cout << endl;
}
} #endif
util.cpp
#include "util.h"
#include <iostream>
#include <ctime>
#include <cmath> using namespace std; int getMaxIndex(double *pdarr, int num)
{
double dmax = -1;
int imax = -1;
for(int i = 0; i < num; ++i)
{
if (pdarr[i] > dmax)
{
dmax = pdarr[i];
imax = i;
}
}
return imax;
} double sigmoid(double x)
{
return 1.0/(1.0+exp(-x));
} double uniform(double _min, double _max)
{
return rand()/(RAND_MAX + 1.0) * (_max - _min) + _min;
} void initArr(double *parr, int num)
{
for (int i = 0; i < num; ++i)
parr[i] = 0.0;
} void savewb(const char *pcname, double **ppw, double *pb,
int irow, int icol)
{
FILE *pf;
if( (pf = fopen(pcname, "ab" )) == NULL )
{
printf( "File coulkd not be opened " );
return;
} int isizeofelem = sizeof(double);
for (int i = 0; i < irow; ++i)
{
if (fwrite((const void*)ppw[i], isizeofelem, icol, pf) != icol)
{
fputs ("Writing ppw error",stderr);
return;
}
}
if (fwrite((const void*)pb, isizeofelem, irow, pf) != irow)
{
fputs ("Writing ppw error",stderr);
return;
}
fclose(pf);
}
long loadwb(const char *pcname, double **ppw, double *pb,
int irow, int icol, long dstartpos)
{
FILE *pf;
long dtotalbyte = 0, dreadsize;
if( (pf = fopen(pcname, "rb" )) == NULL )
{
printf( "File coulkd not be opened " );
return -1;
}
//让文件指针偏移到正确位置
fseek(pf, dstartpos , SEEK_SET); int isizeofelem = sizeof(double);
for (int i = 0; i < irow; ++i)
{
dreadsize = fread((void*)ppw[i], isizeofelem, icol, pf);
if (dreadsize != icol)
{
fputs ("Reading ppw error",stderr);
return -1;
}
//每次成功读取,都要加到dtotalbyte中,最后返回
dtotalbyte += dreadsize;
}
dreadsize = fread(pb, isizeofelem, irow, pf);
if (dreadsize != irow)
{
fputs ("Reading pb error",stderr);
return -1;
}
dtotalbyte += dreadsize;
dtotalbyte *= isizeofelem;
fclose(pf);
return dtotalbyte;
}
void readonefile(const char *pcname)
{
FILE *pf;
if( (pf = fopen(pcname, "rb" )) == NULL )
{
printf( "File could not be opened " );
return;
} /*int isizeofelem = sizeof(BYTE);
BYTE ielem;*/
int isizeofelem = sizeof(double);
double ielem;
while(1 == fread((void*)(&ielem), isizeofelem, 1, pf))
cout << ielem << endl; fclose(pf);
}
void writeonefile(const char *pcname)
{
FILE *pf;
if( (pf = fopen(pcname, "wb" )) == NULL )
{
printf( "File could not be opened " );
return;
} //int isizeofelem = sizeof(BYTE);
//BYTE ielem = (BYTE)16;
int isizeofelem = sizeof(int);
int ielem = 16;
if(1 == fwrite((void*)(&ielem), isizeofelem, 1, pf))
cout << ielem << endl; fclose(pf);
}
至此代码已经贴完了,我测试是可以运行的。本人编码较少,如果有什么问题,请见谅。
这里有vs2008建的工程代码,如果不想自己建工程,可以下载运行即可,工程里面只是少了保存权值的函数而已。
下载地址: 点击打开链接
c++实现mlp神经网络的更多相关文章
- MLP神经网络实例--手写识别
1.导入MNIST数据集 直接使用fetch_mldata会报错,错误信息是python3.7把fetch_mldata方法移除了,所以需要单独下载数据集从这个网站上下载数据集: https://gi ...
- "多层感知器"--MLP神经网络算法
提到人工智能(Artificial Intelligence,AI),大家都不会陌生,在现今行业领起风潮,各行各业无不趋之若鹜,作为技术使用者,到底什么是AI,我们要有自己的理解. 目前,在人工智能中 ...
- python MLP 神经网络使用 MinMaxScaler 没有 StandardScaler效果好
MLP 64,2 preprocessing.MinMaxScaler().fit(X) test confusion_matrix:[[ ...
- MLP神经网络 隐含层节点数的设置】如何设置神经网络隐藏层 的神经元个数
神经网络 隐含层节点数的设置]如何设置神经网络隐藏层 的神经元个数 置顶 2017年10月24日 14:25:07 开心果汁 阅读数:12968 版权声明:本文为博主原创文章,未经博主允许不得转 ...
- Deep learning with Theano 官方中文教程(翻译)(四)—— 卷积神经网络(CNN)
供大家相互交流和学习,本人水平有限,若有各种大小错误,还请巨牛大牛小牛微牛们立马拍砖,这样才能共同进步!若引用译文请注明出处http://www.cnblogs.com/charleshuang/. ...
- 初识spark的MLP模型
初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...
- 循环神经网络RNN原理
一.循环神经网络简介 循环神经网络,英文全称:Recurrent Neural Network,或简单记为RNN.需要注意的是,递归神经网络(Recursive Neural Network)的简写也 ...
- 基于OpenCL的深度学习工具:AMD MLP及其使用详解
基于OpenCL的深度学习工具:AMD MLP及其使用详解 http://www.csdn.net/article/2015-08-05/2825390 发表于2015-08-05 16:33| 59 ...
- 使用深度双向LSTM模型构造社区问答系统
所看到的. 首先强调一下,这个结构也是一个解决对照两个句子类似性的通用RNN解决方式,不只能够使用在问答社区.凡是涉及到对照两个句子或者实体关系的场合全然能够套用这个模型来解决.这点希望读者注意. 首 ...
随机推荐
- 我的工具箱之FileZilla_3.11.0.1_win32-setup.1432524055
FileZilla是用于在Win和Linux之间传递文件的工具,支持FTP和SFTP. 下载地址:http://pan.baidu.com/s/1gelyIYn 2016年3月2日10:29:30
- 我就是认真:Linux SWAP 深度解读(必须收藏)
我就是认真:Linux SWAP 深度解读(必须收藏) http://mp.weixin.qq.com/s?__biz=MzA4Nzg5Nzc5OA==&mid=2651660097& ...
- [BS-20] 导航控制器和视图控制器在添加控制器的区别
导航控制器和视图控制器在添加控制器的区别 1. 因导航控制器拥有导航栈,有一个普通视图控制器都没有的数组viewControllers,加入该数组中的视图控制器默认以push的方式进入导航栈.导航控制 ...
- re模块使用
import re listall = "adkr20xcv3\actad4/" result = re.search('\w+',listall) print result.gr ...
- ASP.NET MVC Error
Error Handler http://prideparrot.com/blog/archive/2012/5/exception_handling_in_asp_net_mvc http://ww ...
- 使用Jquery+EasyUI 进行框架项目开发案例讲解之二---用户管理源码分享
使用Jquery+EasyUI 进行框架项目开发案例讲解之二 用户管理源码分享 在上一篇文章<使用Jquery+EasyUI进行框架项目开发案例讲解之一---员工管理源码分享>我们分享 ...
- redsocks 配合iptables设置全局sockts5代理
参照:http://kuaile.in/archives/1370 架构图: 第一步,安装redsocks 1. 安装依赖 yum install libevent-devel 2. 下载编译 git ...
- 使用dbms_system追踪其它session
dbms_system是内部包,建议在官方指导下使用该包. SQL> desc dbms_system PROCEDURE ADD_PARAMETER_VALUE Argument Name T ...
- 基于axis2框架的两种发布webservice的方法
这次在中韩的产品定义平台的开发,有幸接触到了通过自己写webservice给其他系统调用的项目. 具体开发背景:这个平台做了几个查询接口都是,都是用servlet方式处理请求,而这边系统之间是通过we ...
- Aspectj是什么
转载自:http://www.cnblogs.com/sunwke/articles/2568875.html 网上出现了很多讲解 AspectJ 的资料,但大多是从讲解 AspectJ 语法开始,然 ...