通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,

ConcurrentHashMap允许多个修改操作并发进行,其关键在于使用了锁分离技术。它使用了多个锁来控制对hash表的不同部分进行的修改。

ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个小的hash table,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并发进行。
有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁。这里“按顺序”是很重要的,否则极有可能出现死锁,

在ConcurrentHashMap内部,段数组是final的,并且其成员变量实际上也是final的,但是,仅仅是将数组声明为final的并不保证数组成员也是final的,这需要实现上的保证。这可以确保不会出现死锁,因为获得锁的顺序是固定的。

ConcurrentHashMap和Hashtable主要区别就是围绕着锁的粒度以及如何锁,可以简单理解成把一个大的HashTable分解成多个,形成了锁分离。

ConcurrentHashMap中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点)

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。

Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。

一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构,

一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,

每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。

Get方法:
1.为输入的Key做Hash运算,得到hash值。
2.通过hash值,定位到对应的Segment对象
3.再次通过hash值,定位到Segment当中数组的具体位置。
Put方法:
1.为输入的Key做Hash运算,得到hash值。
2.通过hash值,定位到对应的Segment对象
3.获取可重入锁
4.再次通过hash值,定位到Segment当中数组的具体位置。
5.插入或覆盖HashEntry对象。
6.释放锁。

ConcurrentHashMap的Size方法是一个嵌套循环,大体逻辑如下:
1.遍历所有的Segment。
2.把Segment的元素数量累加起来。
3.把Segment的修改次数累加起来。
4.计算多次Size,判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。
5.如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。
6.再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。
7.释放锁,统计结束。

为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。

JDK1.7版本:

 public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// create segments and segments[0]
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}

1.concurrencyLevel,含义,并发级别,并发度,在键不冲突的情况下,最多允许多少个线程同时访问数据不需要阻塞(理想情况下),我们应该知道,ConcurrentHashMap的基本实现原理就是引入Segment数据结构,将锁的粒度细化到Segment,也就是说,如果多个线程,同时操作多个key,如果这些key,分布在不同的Segment,那这些线程的操作互不影响,当然不需要加锁,提高性能。所以concurrencyLevel,就是要求告诉ConcurrentHashMap,我需要这么过个线程同时访问你而不产生锁冲突。
2.ssize,该变量的值等于ConcurrentHashMap中segment的长度,也就是 Segment[]的长度。该值取决于concurrencyLevel,其实就是小于concurrencyLevel的最大的2的幂,,比如concurrencyLevel=16,那 ssize=16,
如果 concurrencyLevel=12,ssize=8,因为ssize的长度为2的幂。
3.shift的值,看出来了没,其实就是 ssize 2 ^ shift,其实就是表示ssize需要的二进制位。
4.segmentMask、segmentShift ,这两个属性在该表达式中使用:(h >>> segmentShift) & segmentMask),很明显,就是用来算Segment[]数组中的下标来的。意图segmentShift = 32 - sshift,也就是利用hash的高位与代表(ssize-1)来定位下标。// 如果默认,初始容量16,那么ssize=16, sshift=4 定位端 hash 无符号向右移多少28位,(总共32位),那就是使原本32-29位参与运算(高位)
5.cap,就是每个Segment中HashEntity[]的长度,大于【初始容量/segment长度】的最小2的幂。

分析到这里,ConcurrentHashMap就构建成功了,我们先重点关注一下Segment的数据结构。
Segment段的内部数据结构如下:
1)类的声明:static final class Segment<K,V> extends ReentrantLock implements Serializable
2)数据结构:
transient volatile HashEntry<K,V>[] table; // 内部键值对
transient int count; // 元素数量
transient int modCount; // 结构发生变化的次数
transient int threshold; // 扩容时的阔值
final float loadFactor; // 扩容因子,主要影响threshold,影响什么时候扩容
对上述结构,是否似曾相识,对了,就是它,HashMap;每个Segment其实就是一个HashMap;还有一个很关键点:Segment继承自ReentrantLock,也就是Segment本身就是一把锁。

get方法:

 public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}

put方法:

    public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
int j = (hash >>> segmentShift) & segmentMask;
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
s = ensureSegment(j);
return s.put(key, hash, value, false);
}

containsKey方法:

 public boolean containsKey(Object key) {
Segment<K,V> s; // same as get() except no need for volatile value read
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return true;
}
}
return false;
}

containsValue方法:

 public boolean containsValue(Object value) {
// Same idea as size()
if (value == null)
throw new NullPointerException();
final Segment<K,V>[] segments = this.segments;
boolean found = false;
long last = 0;
int retries = -1;
try {
outer: for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
long hashSum = 0L;
int sum = 0;
for (int j = 0; j < segments.length; ++j) {
HashEntry<K,V>[] tab;
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null && (tab = seg.table) != null) {
for (int i = 0 ; i < tab.length; i++) {
HashEntry<K,V> e;
for (e = entryAt(tab, i); e != null; e = e.next) {
V v = e.value;
if (v != null && value.equals(v)) {
found = true;
break outer;
}
}
}
sum += seg.modCount;
}
}
if (retries > 0 && sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return found;
}

size方法:

   public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}

Segment类:

   static final class Segment<K,V> extends ReentrantLock implements Serializable {
/*
* Segments maintain a table of entry lists that are always
* kept in a consistent state, so can be read (via volatile
* reads of segments and tables) without locking. This
* requires replicating nodes when necessary during table
* resizing, so the old lists can be traversed by readers
* still using old version of table.
*
* This class defines only mutative methods requiring locking.
* Except as noted, the methods of this class perform the
* per-segment versions of ConcurrentHashMap methods. (Other
* methods are integrated directly into ConcurrentHashMap
* methods.) These mutative methods use a form of controlled
* spinning on contention via methods scanAndLock and
* scanAndLockForPut. These intersperse tryLocks with
* traversals to locate nodes. The main benefit is to absorb
* cache misses (which are very common for hash tables) while
* obtaining locks so that traversal is faster once
* acquired. We do not actually use the found nodes since they
* must be re-acquired under lock anyway to ensure sequential
* consistency of updates (and in any case may be undetectably
* stale), but they will normally be much faster to re-locate.
* Also, scanAndLockForPut speculatively creates a fresh node
* to use in put if no node is found.
*/ private static final long serialVersionUID = 2249069246763182397L; /**
* The maximum number of times to tryLock in a prescan before
* possibly blocking on acquire in preparation for a locked
* segment operation. On multiprocessors, using a bounded
* number of retries maintains cache acquired while locating
* nodes.
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; /**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
*/
transient volatile HashEntry<K,V>[] table; /**
* The number of elements. Accessed only either within locks
* or among other volatile reads that maintain visibility.
*/
transient int count; /**
* The total number of mutative operations in this segment.
* Even though this may overflows 32 bits, it provides
* sufficient accuracy for stability checks in CHM isEmpty()
* and size() methods. Accessed only either within locks or
* among other volatile reads that maintain visibility.
*/
transient int modCount; /**
* The table is rehashed when its size exceeds this threshold.
* (The value of this field is always <tt>(int)(capacity *
* loadFactor)</tt>.)
*/
transient int threshold; /**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
* links to outer object.
* @serial
*/
final float loadFactor; Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
} final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
} /**
* Doubles size of table and repacks entries, also adding the
* given node to new table
*/
@SuppressWarnings("unchecked")
private void rehash(HashEntry<K,V> node) {
/*
* Reclassify nodes in each list to new table. Because we
* are using power-of-two expansion, the elements from
* each bin must either stay at same index, or move with a
* power of two offset. We eliminate unnecessary node
* creation by catching cases where old nodes can be
* reused because their next fields won't change.
* Statistically, at the default threshold, only about
* one-sixth of them need cloning when a table
* doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by
* any reader thread that may be in the midst of
* concurrently traversing table. Entry accesses use plain
* array indexing because they are followed by volatile
* table write.
*/
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
for (HashEntry<K,V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// Clone remaining nodes
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
} /**
* Scans for a node containing given key while trying to
* acquire lock, creating and returning one if not found. Upon
* return, guarantees that lock is held. UNlike in most
* methods, calls to method equals are not screened: Since
* traversal speed doesn't matter, we might as well help warm
* up the associated code and accesses as well.
*
* @return a new node if key not found, else null
*/
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
} /**
* Scans for a node containing the given key while trying to
* acquire lock for a remove or replace operation. Upon
* return, guarantees that lock is held. Note that we must
* lock even if the key is not found, to ensure sequential
* consistency of updates.
*/
private void scanAndLock(Object key, int hash) {
// similar to but simpler than scanAndLockForPut
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
int retries = -1;
while (!tryLock()) {
HashEntry<K,V> f;
if (retries < 0) {
if (e == null || key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f;
retries = -1;
}
}
} /**
* Remove; match on key only if value null, else match both.
*/
final V remove(Object key, int hash, Object value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
while (e != null) {
K k;
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
} final boolean replace(K key, int hash, V oldValue, V newValue) {
if (!tryLock())
scanAndLock(key, hash);
boolean replaced = false;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
if (oldValue.equals(e.value)) {
e.value = newValue;
++modCount;
replaced = true;
}
break;
}
}
} finally {
unlock();
}
return replaced;
} final V replace(K key, int hash, V value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
e.value = value;
++modCount;
break;
}
}
} finally {
unlock();
}
return oldValue;
} final void clear() {
lock();
try {
HashEntry<K,V>[] tab = table;
for (int i = 0; i < tab.length ; i++)
setEntryAt(tab, i, null);
++modCount;
count = 0;
} finally {
unlock();
}
}
}

ConcurrentHashMap中的可以同时多个get,一个put,在get的时候可能会与put的有冲突,在put赋值的时候,value可能为null,也可能读取到修改前,或后的值

如果读取到null,就进行加锁重新读取(readValueUnderLock),读取到修改前后的值是可以允许的。

http://www.jasongj.com/java/concurrenthashmap/

http://blog.csdn.net/prestigeding/article/details/53391264

http://www.infoq.com/cn/articles/ConcurrentHashMap/

http://www.cnblogs.com/ITtangtang/p/3948786.html

http://blog.csdn.net/xuefeng0707/article/details/40834595

http://mp.weixin.qq.com/s?__biz=MzIxMjE5MTE1Nw==&mid=2653192083&idx=1&sn=5c4becd5724dd72ad489b9ed466329f5&chksm=8c990d49bbee845f69345e4121888ec967df27988bc66afd984a25331d2f6464a61dc0335a54&scene=21#wechat_redirect

Java ConcurrentHashMap的更多相关文章

  1. Java ConcurrentHashMap Example and Iterator--转

    原文地址:http://www.journaldev.com/122/java-concurrenthashmap-example-iterator#comment-27448 Today we wi ...

  2. Java ConcurrentHashMap 源代码分析

    Java ConcurrentHashMap jdk1.8 之前用到过这个,但是一直不清楚原理,今天抽空看了一下代码 但是由于我一直在使用java8,试了半天,暂时还没复现过put死循环的bug 查了 ...

  3. Java - ConcurrentHashMap的原理

    Java - ConcurrentHashMap的原理 **这是JDK1.7的实现** ConcurrentHashMap 类中包含两个静态内部类 HashEntry 和 Segment. HashE ...

  4. Java ConcurrentHashmap 解析

    总体描述: concurrentHashmap是为了高并发而实现,内部采用分离锁的设计,有效地避开了热点访问.而对于每个分段,ConcurrentHashmap采用final和内存可见修饰符Volat ...

  5. Java ConcurrentHashMap存入引用对象时也是线程安全的

    本人小白,看到资料说ConcurrentHashMap是线程安全的,get过程不需要加锁,put是线程安全的,推荐高并发时使用.但是本人不清楚是否该map中存入的引用类型对象,对象属性变化也是否线程安 ...

  6. Java ConcurrentHashMap (Java代码实战-005)

    package Threads; import com.google.common.collect.Maps; import java.util.concurrent.ConcurrentMap; i ...

  7. 对Java ConcurrentHashMap的一些了解

    ①引言(为什么要使用ConcurrentHashMap) 因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap. Has ...

  8. Java ConcurrentHashMap的小测试

    今天正式开始自己的分布式学习,在第一章介绍多线程工作模式时,作者抛出了一段关于ConcurrentHashMap代码让我很是疑惑,代码如下: public class TestClass { priv ...

  9. 源码浅入浅出 Java ConcurrentHashMap

    从源码的角度深入地分析了 ConcurrentHashMap 这个线程安全的 HashMap,希望能够给你一些帮助. 老读者就请肆无忌惮地点赞吧,微信搜索[沉默王二]关注这个在九朝古都洛阳苟且偷生的程 ...

随机推荐

  1. SQL Server 错误:15023(创建对于用户失败)

    问题: 错误15023:当前数据库中已存在用户或角色 在把远程服务器上的数据库备份还原到本地机后, 给一个"登录"关联一个"用户"时(用户映射),发生错误:“错 ...

  2. 中科大各Linux发行版的更新源列表

    sudo vi /etc/apt/sources.list Raspberry Pi deb http://mirrors.ustc.edu.cn/raspbian/raspbian/ jessie ...

  3. Solr学习笔记之1、环境搭建

    Solr学习笔记之1.环境搭建 一.下载相关安装包 1.JDK 2.Tomcat 3.Solr 此文所用软件包版本如下: 操作系统:Win7 64位 JDK:jdk-7u25-windows-i586 ...

  4. FZU 2171 线段树 区间更新求和

    很模板的题 在建树的时候输入 求和后更新 #include<stdio.h> #include<string.h> #include<algorithm> #inc ...

  5. 2016.05.03,英语,《Vocabulary Builder》Unit 21

    sub, means 'under', as in subway, submarine, substandard. A subject is a person who is under the aut ...

  6. A trip through the Graphics Pipeline 2011_02

    Welcome back. Last part was about vertex shaders, with some coverage of GPU shader units in general. ...

  7. GTX 770 (GK 104)

    上周的这个时候,NVIDIA GeForce 700系列的旗舰产品GTX 780正式发布,传闻已久的GTX 700家族终于来了!虽然没有任何新架构.新特性的旗舰卡发布总让人觉得少点什么.但从性能上来说 ...

  8. LR脚本技巧

    1.参数化空值       如上图所示,当参数化时某个值需要为空值(非空格),直接在参数化文件中空一行/格即可,虽然Parameter List界面上没有显示空的那一行,但并不影响取值. 2.手工日志 ...

  9. but this usually doesn’t gain you anything.

    High Performance My SQL, Third Edition Date and Time Types My SQL has many types for various kinds o ...

  10. [教程] 以本论坛为例,手把手教你使用按键精灵POST登陆网页

    本帖最后由 isaacc 于 2012-2-26 11:08 编辑 整个操作,很无脑.只要你够勤快,你学不会,你来咬我.懒人和伸手党就直接复制代码去玩吧,但我不是叫你拿去干坏事. 准备工具:WPE和I ...