poj1860 bellman—ford队列优化 Currency Exchange
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 22123 | Accepted: 7990 |
Description
For example, if you want to exchange 100 US Dollars into Russian
Rubles at the exchange point, where the exchange rate is 29.75, and the
commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal
with in our city. Let us assign unique integer number from 1 to N to
each currency. Then each exchange point can be described with 6 numbers:
integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow,
after some exchange operations, increase his capital. Of course, he
wants to have his money in currency S in the end. Help him to answer
this difficult question. Nick must always have non-negative sum of money
while making his operations.
Input
first line of the input contains four numbers: N - the number of
currencies, M - the number of exchange points, S - the number of
currency Nick has and V - the quantity of currency units he has. The
following M lines contain 6 numbers each - the description of the
corresponding exchange point - in specified above order. Numbers are
separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100,
V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no
exchange point is used more than once in this sequence. You may assume
that ratio of the numeric values of the sums at the end and at the
beginning of any simple sequence of the exchange operations will be less
than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Source
解析
题意:
有多种汇币,汇币之间可以交换,这需要手续费,当你用100A币交换B币时,A到B的汇率是29.75,手续费是0.39,那么你可以得到(100 - 0.39) * 29.75 = 2963.3975 B币。问s币的金额经过交换最终得到的s币金额数能否增加
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的
怎么找正权回路呢?(正权回路:在这一回路上,顶点的权值能不断增加即能一直进行松弛)
分析:
一种货币就是一个点
一个“兑换点”就是图上两种货币之间的一个兑换方式,是双边,但A到B的汇率和手续费可能与B到A的汇率和手续费不同。
唯一值得注意的是权值,当拥有货币A的数量为V时,A到A的权值为K,即没有兑换
而A到B的权值为(V-Cab)*Rab
本题是“求最大路径”,之所以被归类为“求最小路径”是因为本题题恰恰与bellman-Ford算法的松弛条件相反,求的是能无限松弛的最大正权路径,但是依然能够利用bellman-Ford的思想去解题。
因此初始化dis(S)=V 而源点到其他点的距离(权值)初始化为无穷小(0),当s到其他某点的距离能不断变大时,说明存在最大路径;如果可以一直变大,说明存在正环。判断是否存在环路,用Bellman-Ford和spfa都可以。
spfa算法:
下面是bellman——ford队列优化的代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
double cost[105][105],rate[105][105];
int n,vis[105];
double v,dis[105];
bool bellman_ford(int start){
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[start]=v;
queue<int>q;
q.push(start);
vis[start]=1;
while(!q.empty()){
int x=q.front();
q.pop();
vis[x]=0;
for(int i=1;i<=n;i++){
if(dis[i]<(dis[x]-cost[x][i])*rate[x][i]){
dis[i]=(dis[x]-cost[x][i])*rate[x][i];
if(dis[start]>v)
return true;
if(!vis[i]){
q.push(i);
vis[i]=1;
}
}
}
}
return false;
}
int main(){
int m,s;
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
memset(cost,0,sizeof(vis));
memset(rate,0,sizeof(rate)); for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
if(i==j)
rate[i][j]=1.0;
}
int x,y;
double rab,rba,cab,cba;
for(int i=1;i<=m;i++){
cin>>x>>y>>rab>>cab>>rba>>cba;
cost[x][y]=cab;
cost[y][x]=cba;
rate[x][y]=rab;
rate[y][x]=rba;
}
if(bellman_ford(s))
printf("YES\n");
else printf("NO\n");
}
return 0;
}
下面是bellman——ford算法
bellman——ford算法中的调用函数的解析
如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入
代码
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
int Count,n,m,s;
double v;
double dis[105];
struct node{
int x;
int y;
double cost,rate;
}que[105];
bool Bellman_Ford(){
memset(dis,0,sizeof(dis));//此处与Bellman-Ford的处理相反,初始化为源点到各点距离0,到自身的值为原值
dis[s]=v;
int flag;
for(int i=1;i<n;i++){
flag=0;
for(int j=0;j<Count;j++){
int x=que[j].x;
int y=que[j].y;
double cost=que[j].cost;
double rate=que[j].rate;
if(dis[y]<(dis[x]-cost)*rate){
dis[y]=(dis[x]-cost)*rate;
flag=1;
}
}
if(!flag)
break;
}
for(int i=0;i<Count;i++){//正环能够无限松弛,
if(dis[que[i].y]<(dis[que[i].x]-que[i].cost)*que[i].rate)
return true;
}//如果上一步循环中中途退出,说明不在进行松弛了,那么这一步也不会再次进行松弛
//上一步不再进行松弛其实是说明不在会有正权环了,如果仍然有正权环还会继续进行松弛,
//没有正权环其实本题也是输出NO了,如果有正权环,说明可以不断循环增加自己本身的财产,
//那么及时多循环多少次仍然可以增加自己的收入 return false;
}
int main(){
while(scanf("%d%d%d%lf",&n,&m,&s,&v)!=EOF){
int x,y;
double rab,rba,cba,cab;
Count=0;
for(int i=1;i<=m;i++){
scanf("%d%d%lf%lf%lf%lf",&x,&y,&rab,&cab,&rba,&cba);
que[Count].x=x;
que[Count].y=y;
que[Count].cost=cab;
que[Count].rate=rab;
Count++;
que[Count].x=y;
que[Count].y=x;
que[Count].cost=cba;
que[Count].rate=rba;
Count++;
}
if(Bellman_Ford())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
poj1860 bellman—ford队列优化 Currency Exchange的更多相关文章
- bellman ford优先队列优化简介模板
#include<iostream>#include<cstdio>#include<utility>#include<queue>#include&l ...
- POJ1860——Currency Exchange(BellmanFord算法求最短路)
Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...
- Currency Exchange POJ1860
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860 Currency Exchange(bellman-ford)
链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...
- POJ1860 Currency Exchange【最短路-判断环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- POJ1860:Currency Exchange(BF)
http://poj.org/problem?id=1860 Description Several currency exchange points are working in our city. ...
- poj1860 Currency Exchange(spfa判断正环)
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860 Currency Exchange —— spfa求正环
题目链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- Bellman_ford 算法 Currency Exchange POJ1860
Bellman_ford算法用于寻找正环或者负环! 算法导论: 24.1 The Bellman-Ford algorithm The Bellman-Ford algorithm solves th ...
随机推荐
- Boostrap(1)
1.简介 Bootstrap 是一个用于快速开发 Web 应用程序和网站的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的,可以认为bootstrap就是一个样式库. ...
- Symfony启动过程详细学习
想了解symfony的启动过程,必须从启动文件(这里就以开发者模式)开始. <?php /* * web/app_dev.php */ $loader = require_once __DIR_ ...
- 每天一个linux命令(26):du 命令
Linux du命令也是查看使用空间的,但是与df命令不同的是Linux du命令是对文件和目录磁盘使用的空间的查看,还是和df命令有一些区别的. 1.命令格式: du [选项][文件] 2.命令功能 ...
- java日期加减
1.用java.util.Calender来实现 Calendar calendar=Calendar.getInstance(); calendar.setTime(new Date()) ...
- str和repr的
尽管str(),repr()和``运算在特性和功能方面都非常相似,事实上repr()和``做的是完全一样的事情,它们返回的是一个对象的“官方”字符串表示,也就是说绝大多数情况下可以通过求值运算(使用内 ...
- python逐行读写
代码: fileReadObj = open("input.txt") fileWriteObj = open("output.txt", 'w') fileL ...
- 判断一个数据是否存在于一个表中,Oracle中写自定义函数
create or replace function isExist(data in DataTypes) --DataTypes 为表中该数据的类型return Numberisv_flag num ...
- TYVJP1933 绿豆蛙的归宿
背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达 ...
- javascript显示实时时间
<html> <script language=Javascript> function time(){ //获得显示时间的div t_div = document.getEl ...
- 添加已有项目到git rep
cd yourproject——homegit init //在当前项目目录中生成本地git管理,建立一个隐藏.git目录 git add src //添加你想用git管理的代码的目录 git com ...