UVa 12627 Erratic Expansion - 分治
因为不好复制题目,就出给出链接吧:
Vjudge传送门[here]
UVa传送门[here]
请仔细看原题上的那幅图,你会发现,在时间t(t > 0),当前的气球构成的一幅图,它是由三个时间为(t - 1)的图再加上一块全是蓝色的一块构成。所以可以想到递归求解。对于上半部分的行求前一时刻对应几行的红球数乘2,下面的减去2t - 1然后递归前一幅图求解。
但是这样最坏的时间复杂度为O(2k-1),仍然会TLE,那么得另寻出路。如果求在时刻t整个一幅图的红球个数,那么可以直接算出来,个数为3k。
因此在递归的过程中特判一下是不是求整个图的红球个数,可以把时间复杂度将为?O(log2n)
Code
/**
* UVa
* Problem#12627
* Accepted
* Time:0ms
*/
#include<iostream>
#include<cstdio>
#include<cctype>
#include<ctime>
#include<cstring>
#include<cstdlib>
#include<fstream>
#include<sstream>
#include<algorithm>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<vector>
#include<stack>
#ifndef WIN32
#define AUTO "%lld"
#else
#define AUTO "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define inf 0xfffffff
#define smin(a, b) a = min(a, b)
#define smax(a, b) a = max(a, b)
template<typename T>
inline void readInteger(T& u){
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-');
if(x == '-'){
x = getchar();
aFlag = -;
}
for(u = x - ''; isdigit((x = getchar())); u = (u << ) + (u << ) + x - '');
ungetc(x, stdin);
u *= aFlag;
} int T;
int n, a, b; template<typename T>
T pow(T a, int pos) {
if(pos == ) return ;
if(pos == ) return a;
T temp = pow(a, pos / );
if(pos & ) return temp * temp * a;
return temp * temp;
} inline void init() {
readInteger(n);
readInteger(a);
readInteger(b);
} long long dfs(int dep, int top, int bottom) {
if(dep == ) return ;
if(top == && bottom == ( << dep)) return pow((long long), dep);
int mid = << (dep - );
if(bottom <= mid) return * dfs(dep - , top, bottom);
if(top > mid) return dfs(dep - , top - mid, bottom - mid);
return * dfs(dep - , top, mid) + dfs(dep - , , bottom - mid);
} inline void solve() {
long long res = dfs(n, a, b);
printf(AUTO"\n", res);
} int main() {
readInteger(T);
for(int kase = ; kase <= T; kase++) {
init();
printf("Case %d: ", kase);
solve();
}
return ;
}
UVa 12627 Erratic Expansion - 分治的更多相关文章
- UVA - 12627 Erratic Expansion 奇怪的气球膨胀 (分治)
紫书例题p245 Piotr found a magical box in heaven. Its magic power is that if you place any red balloon i ...
- UVA 12627 - Erratic Expansion
一个红球能够分裂为3个红球和一个蓝球. 一个蓝球能够分裂为4个蓝球. 分裂过程下图所看到的: 设当前状态为k1.下一状态为k2. k1的第x行红球个数 * 2 ⇒ k2第2*x行的红球个数. k1的第 ...
- Uva 12627 Erratic Expansion(递归)
这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球. 我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的.在研读了例题上给出的提示后豁然开朗(顺便吐 ...
- uva 12627 - Erratic Expansion(递归求解)
递归的边界条件写的多了--不是必需写呢么多的.. 不明确可共同探讨~ #include<cstdio> #include<iostream> #include<cmath ...
- UVA - 12627 Erratic Expansion(奇怪的气球膨胀)(递归)
题意:问k小时后,第A~B行一共有多少个红气球. 分析:观察图可发现,k小时后,图中最下面cur行的红气球个数满足下式: (1)当cur <= POW[k - 1]时, dfs(k, cur) ...
- UVA 12673 Erratic Expansion 奇怪的气球膨胀 (递推)
不难发现,每过一个小时,除了右下方的气球全都是蓝色以外,其他都和上一个小时的气球是一样的,所以是可以递推的.然后定义一类似个前缀和的东西f(k,i)表示k小时之后上面i行的红气球数.预处理出k小时的红 ...
- 12627 - Erratic Expansion——[递归]
Piotr found a magical box in heaven. Its magic power is that if you place any red balloon inside it ...
- 【数形结合】Erratic Expansion
[UVa12627]Erratic Expansion 算法入门经典第8章8-12(P245) 题目大意:起初有一个红球,每一次红球会分成三红一蓝,蓝球会分成四蓝(如图顺序),问K时的时候A~B行中有 ...
- UVa 12627 (递归 计数 找规律) Erratic Expansion
直接说几个比较明显的规律吧. k个小时以后,红气球的个数为3k. 单独观察一行: 令f(r, k)为k个小时后第r行红气球的个数. 如果r为奇数,f(r, k) = f((r+1)/2, k-1) * ...
随机推荐
- Oracle卸载之Win7操作系统下Oracle11g 数据库卸载过程图解
1.首先停止oracle11g数据库的5个服务 右键“计算机”,在下拉菜单列表中单击“管理”,进入计算机管理器.图解步骤如下: 选择左侧工具栏最后一项“服务和应用程序”,点击进入下拉菜单,单击“服务” ...
- How MySQL Uses Indexes CREATE INDEX SELECT COUNT(*)
MySQL :: MySQL 5.7 Reference Manual :: 9.3.1 How MySQL Uses Indexeshttps://dev.mysql.com/doc/refman/ ...
- 2018/04/02 每日一个Linux命令 之 新建/修改/删除群组
-- 新建群组 groupadd [群组名] -- 修改群组名称 groupmod [群组名] [新群组名] -n 修改组名 -g 修改组识别码 -- 删除群组 groupdel [删除的组名] --
- CF1003E Tree Constructing 构造+树论
正解:构造 解题报告: 传送门! 这题麻油翻译鸭,,,那就先大概港下题意趴QAQ 构造一棵n个点,直径为d,每个点点度不超过k的树 这题其实我jio得还是比较简单的趴,,, 首先构造出一条直径,就是一 ...
- sql server 备份恢复效率
sql server 备份恢复效率 如何提高备份的速度呢? 其实这个问题和如何让系统跑的更快是一样的,要想系统跑的更快,无非就是:优化系统,或者就是更好更强大的服务器,特别是更多的cpu.更大的内存. ...
- js与jQuery差别
jQuery能大大简化Javascript程序的编写,我近期花时间了解了一下jQuery.把我上手过程中的笔记和大家分享出来.希望对大家有所帮助. 要使用jQuery.首先要在HTML代码最前面加上对 ...
- RN例子,发送http请求,日期选择
发送http请求 let map = { method: 'post', headers: { token: '', 'Content-Type': 'application/json' }, bod ...
- 万恶之源 - Python基础数据类型一
整数 整数在Python中的关键字用int来表示; 整型在计算机中运于计算和比较 在32位机器上int的范围是: -2**31-2**31-1,即-2147483648-2147483647 在64 ...
- Ubuntu搭建solr搜索服务器
参考:http://blog.csdn.net/makang110/article/details/50971705 一:搭建solr服务器 1:安装jdk1.7,并配置环境变量 2:下载tomcat ...
- makefile 中wildcard
在Makefile规则中,通配符会被自动展开.但在变量的定义和函数引用时,通配符将失效.这种情况下如果需要通配符有效,就需要使用函数“wildcard”,它的用法是:$(wildcard PATTER ...