2243: [SDOI2011]染色(LCT)
2243: [SDOI2011]染色
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 10909 Solved: 4216
[Submit][Status][Discuss]
Description
Input
Output
对于每个询问操作,输出一行答案。
Sample Input
2 2 1 2 1 1
1 2
1 3
2 4
2 5
2 6
Q 3 5
C 2 1 1
Q 3 5
C 5 1 2
Q 3 5
Sample Output
1
2
HINT
数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。
Source
思路:可以用树剖做。 在线段树上维护区间颜色种数,最左边的颜色,最右边的颜色,加lazy标记...然后可以搞了。
这里用LCT做,加深下自己对LCT的理解。
之前有道题,树上DP,但是树的形态是变化的,因为对LCT理解不深,不知道最后没写出来。写了这题,估计可以写了。
我们用lcol表示原树上儿子(只考虑当前重链)颜色,rcol原树上父亲颜色。这样就可以上推了。
void pushup(int x)
{
lcol[x]=ch[x][]?lcol[ch[x][]]:col[x];
rcol[x]=ch[x][]?rcol[ch[x][]]:col[x];
sum[x]=;
if(ch[x][]) sum[x]+=sum[ch[x][]]-(col[x]==rcol[ch[x][]]);
if(ch[x][]) sum[x]+=sum[ch[x][]]-(col[x]==lcol[ch[x][]]);
}
注意rev操作,不仅仅要交换左右儿子,也要交换lcol和rcol,这里wa了一下下。其他部分都是常规操作。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int ch[maxn][],fa[maxn],rev[maxn],sum[maxn],col[maxn],lcol[maxn],rcol[maxn];
int Laxt[maxn],Next[maxn<<],To[maxn<<],lazy[maxn],cnt;
void reverse(int x){ if(!x) return ; swap(ch[x][],ch[x][]);swap(lcol[x],rcol[x]); rev[x]^=;} //一定要记得把lcol和rcol给swap了...
void change(int x,int y){ col[x]=lcol[x]=rcol[x]=y; sum[x]=; lazy[x]=y;}
void pushdown(int x)
{
if(rev[x]){
reverse(ch[x][]); reverse(ch[x][]); rev[x]=;
}
if(lazy[x]){
change(ch[x][],lazy[x]);
change(ch[x][],lazy[x]);
lazy[x]=;
}
}
void pushup(int x)
{
lcol[x]=ch[x][]?lcol[ch[x][]]:col[x];
rcol[x]=ch[x][]?rcol[ch[x][]]:col[x];
sum[x]=;
if(ch[x][]) sum[x]+=sum[ch[x][]]-(col[x]==rcol[ch[x][]]);
if(ch[x][]) sum[x]+=sum[ch[x][]]-(col[x]==lcol[ch[x][]]);
}
void add(int u,int v){ Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; }
void dfs(int u,int f)
{
fa[u]=f; for(int i=Laxt[u];i;i=Next[i]) if(To[i]!=f) dfs(To[i],u);
}
int get(int x){ return ch[fa[x]][]==x;}
int isroot(int x){ return ch[fa[x]][]!=x&&ch[fa[x]][]!=x;}
void rotate(int x)
{
int old=fa[x],fold=fa[old],opt=get(x);
if(!isroot(old)) ch[fold][get(old)]=x;
fa[x]=fold; fa[old]=x; fa[ch[x][opt^]]=old;
ch[old][opt]=ch[x][opt^]; ch[x][opt^]=old;
pushup(old); //x最后一次性pushup,不必重复updatex
}
void P(int x){ if(!isroot(x)) P(fa[x]); pushdown(x);}
void splay(int x)
{
P(x); for(int f;!isroot(x);rotate(x)){
if(!isroot(f=fa[x])) rotate(get(x)==get(f)?f:x);
}
pushup(x);
}
void access(int x)
{
for(int y=;x;y=x,x=fa[x]){
splay(x); ch[x][]=y; pushup(x);//!要的
}
}
void makeroot(int x) { access(x); splay(x); reverse(x);}
int main()
{
int N,M,u,v,c; char opt[];
scanf("%d%d",&N,&M);
rep(i,,N) scanf("%d",&col[i]),change(i,col[i]);
rep(i,,N-){
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
dfs(,);
while(M--){
scanf("%s",opt+);
if(opt[]=='Q'){
scanf("%d%d",&u,&v);
makeroot(u); access(v); splay(v);
printf("%d\n",sum[v]);
}
else {
scanf("%d%d%d",&u,&v,&c);
makeroot(u); access(v); splay(v);
change(v,c);
}
}
return ;
}
2243: [SDOI2011]染色(LCT)的更多相关文章
- Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5020 Solved: 1872[Submit][Status ...
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
- bzoj-2243 2243: [SDOI2011]染色(树链剖分)
题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6267 Solved: 2291 Descript ...
- bzoj 2243 [SDOI2011]染色(树链剖分,线段树)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4637 Solved: 1726[Submit][Status ...
- 2243: [SDOI2011]染色
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 3113 Solved: 1204[Submit][Status ...
- bzoj 2243: [SDOI2011]染色 线段树区间合并+树链剖分
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 7925 Solved: 2975[Submit][Status ...
- bzoj 2243: [SDOI2011]染色 (树链剖分+线段树 区间合并)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 9854 Solved: 3725[Submit][Status ...
- BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 2243: [SDOI2011]染色 树链剖分+线段树区间合并
2243: [SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数 ...
随机推荐
- flash破解工具/flash decompiler
如果想比较方便地参观浏览一下flash(swf)文件里面的内容,推荐使用国外免费开源的工具JPEXS Free Flash Decompiler. 传送门:https://www.free-decom ...
- Codeforces 837D - Round Subset(dp)
837D - Round Subset 思路:dp.0是由2*5产生的. ①dp[i][j]表示选i个数,因子2的个数为j时因子5的个数. 状态转移方程:dp[i][j]=max(dp[i][j],d ...
- mysql 问题 Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdb
异常错误:Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.c ...
- t-SNE 聚类
一个有效的数据降维的方法 t-SNE,类似PCA的主成分降维分析. 参考: t-分布邻域嵌入算法(t-SNE algorithm)简单理解 t-SNE初学 很好的教程:An illustrated i ...
- python-day6---流程控制
# if 条件:# 子代码1# 子代码2# 子代码3 # if True:# print('ok')# print('=====?>')# print('=====?>')# print( ...
- 转化为json方式函数
1,我的数据格式是: {"message":"","code":0,"data":[{"Order" ...
- SecureCRT 7.2.0 Mac版密码无法保存的解决办法
参考:http://jingyan.baidu.com/article/915fc414fda5fb51394b20bd.html 我之前在网上找的解决办法都是SecureCRT 7.2.0 Mac ...
- 多线程私有数据pthread_key_create
参照:http://blog.csdn.net/xiaohuangcat/article/details/18267561 在多线程的环境下,进程内的所有线程共享进程的数据空间.因此全局变量为所有线程 ...
- 小程序公用js提取到app.js中调用的实例
index.wxml: <view "> <text>{{page}}</text> </view> <view "> ...
- Openwrt working with patches in the build system (8)
Reference :https://openwrt.org/docs/guide-developer/build-system/use-patches-with-buildsystem exampl ...