Ant Counting

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 3   Accepted Submission(s) : 2
Problem Description
Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

Being a
bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1
<= T <= 1,000) families of ants which she labeled 1..T (A ants
altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can
be formed?

While observing one group, the set of three ant families was
seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of
marching ants were:

3 sets with 1 ant: {1} {2} {3}
5 sets with 2
ants: {1,1} {1,2} {1,3} {2,2} {2,3}
5 sets with 3 ants: {1,1,2} {1,1,3}
{1,2,2} {1,2,3} {2,2,3}
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3}

1 set with 5 ants: {1,1,2,2,3}

Your job is to count the number of
possible sets of ants given the data above.

 
Input
* Line 1: 4 space-separated integers: T, A, S, and B
<br> <br>* Lines 2..A+1: Each line contains a single integer that is
an ant type present in the hive
 
Output
* Line 1: The number of sets of size S..B (inclusive)
that can be created. A set like {1,2} is the same as the set {2,1} and should
not be double-counted. Print only the LAST SIX DIGITS of this number, with no
leading zeroes or spaces.
 
Sample Input
3 5 2 3
1
2
2
1
3
 
Sample Output
10
 

分析:

多重集组合数也是由多重背包问题拓展出来的一类经典问题。这里仍然给大家讲2种方法:

①朴素方法:

状态:dp[i][j]:前i种中选j个可以组成的种数

决策:第i种选k个,k<=ant[i] && j-k>=0

转移:dp[i][j]=Σdp[i-1][j-k]

复杂度为O(B*Σant[i])即O(B*A)也即O(A^2),虽说这题A最大可到1e5,但是实际数据水,能过

②优化递推式

状态:dp[i][j]:前i种中选j个可以组成的种数

决策:第i种不选或者至少选一个

转移:

1.若不选,显然为dp[i-1][j]

2.若至少选一种,那么为dp[i][j-1]-dp[i-1][j-ant[i]-1]

我们这样来理解,dp[i][j-1] 理解为已经选了第i种一个,至于还选不选这里我们不管它,所以它可以用来代表至少选一个

但是dp[i][j-1]还有一层含义便是前i种中选j-1个可以组成的种数,所以它包含了选ant[i]个第i种,即dp[i-1][j-ant[i]-1],但

dp[i][j] 最多选ant[i]个第i种,所以最后要减去这一种。

所以 dp[i][j] = dp[i-1][j] + dp[i][j-1] - dp[i-1][j-ant[i]-1]

复杂度为O(T*B)

 #include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int mod = ;
int dp[][];
int main()
{
int ant[];
int t, a, s, b;
cin >> t >> a >> s >> b;
memset(ant, , sizeof(ant));
int i;
int j;
for (i = ; i <= a; i++)
{
cin >> j;
ant[j]++;
}
for (i = ; i <= t; i++) dp[i][] = ;
dp[][] = dp[][] = ;
for (i = ; i <= t; i++)
{
for (j = ; j <= b; j++)
{
if (j - ant[i] - >= )
{//在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
dp[i][j] = (dp[i - ][j] + dp[i ][j - ] - dp[i - ][j - ant[i] - ] + mod) % mod;
}
else
{
dp[i][j] = (dp[i - ][j] + dp[i][j - ])%mod;
}
}
}
int sum = ;
for (i = s; i <= b; i++)
sum = (sum + dp[t][i]) % mod;
cout << sum << endl;
return ;
}

为了节约空间%2;

#include<iostream>
using namespace std;
#define MOD 1000000
int T, A, S, B;
int ant[];
int dp[][];
int ans;
int main()
{
scanf("%d%d%d%d", &T, &A, &S, &B);
for (int i = ; i <= A; i++)
{
int aa;
scanf("%d", &aa);
ant[aa]++;
}
dp[][] = dp[][] = ;
for (int i = ; i <= T; i++)
for (int j = ; j <= B; j++)
if (j - ant[i] - >= ) dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ] - dp[(i - ) % ][j - ant[i] - ] + MOD) % MOD; //在取模时若出现了减法运算则需要先+Mod再对Mod取模,防止出现负数(如5%4-3%4为负数)
else dp[i % ][j] = (dp[(i - ) % ][j] + dp[i % ][j - ]) % MOD;
for (int i = S; i <= B; i++)
ans = (ans + dp[T % ][i]) % MOD;
printf("%d\n", ans);
return ;
}
 

poj 3046 Ant Counting(多重集组合数)的更多相关文章

  1. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  2. poj3046 Ant Counting——多重集组合数

    题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...

  3. poj 3046 Ant Counting

    Ant Counting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4982   Accepted: 1896 Desc ...

  4. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  5. poj 3046 Ant Counting——多重集合的背包

    题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...

  6. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  7. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  8. 【POJ - 3046】Ant Counting(多重集组合数)

    Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...

  9. POJ_3046_Ant_Counting_(动态规划,多重集组合数)

    描述 http://poj.org/problem?id=3046 n种蚂蚁,第i种有ai个,不同种类的蚂蚁可以相互区分,但同一种类的蚂蚁不能相互区分,从这些蚂蚁中取出s,s+1,s+2,...,b- ...

随机推荐

  1. 使用emma时遇到的一些问题

    今天在用使用emma的过程中遇到了几个问题,记录一下. 1.跑junit过程中没办法产生coverage data文件,导致最后没办法出emma报告,上官网查了一下原因如下: I have instr ...

  2. 那些年,追寻JMeter的足迹,免费送……

    ​我们测试技术部武汉团队自16年引入jmeter以来,利用jmeter做了很多事情.首先运用jmeter进行接口测试,后续实现jmeter自动化冒烟测试,顺带也实现了线上环境的巡检,节省了大量人力.j ...

  3. docker-compose工具

    环境:CentOS7.0 安装版本:1.3.2 参考资料:https://docs.docker.com/compose/install/ 安装方式: [root@Docker ~]#curl -L ...

  4. stdlib.h

    stdlib 头文件即standard library标准库头文件.stdlib.h里面定义了五种类型.一些宏和通用工具函数. 1 类型例如size_t.wchar_t.div_t.ldiv_t和ll ...

  5. jQuery事件绑定汇总(包括一些无法获取事件的问题)

    ★ $(document).on('click', 'button[name=closeLayerOut2]', function () { ...... }); $(document).on('cl ...

  6. linux内核空间和用户空间详解

    linux驱动程序一般工作在内核空间,但也可以工作在用户空间.下面我们将详细解析,什么是内核空间,什么是用户空间,以及如何判断他们.Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Li ...

  7. windows下配置redis

    1.首先去GitHub上下载所需文件,这里我们下载的是zip文件 https://github.com/MicrosoftArchive/redis/releases 2.解压后文件目录如下 3.启动 ...

  8. vulcanjs schemas&& collections

    一张参考图 说明 从上图我们可以方便的看出schmea 能做的事情 Generate a GraphQL equivalent of your schema to control your Graph ...

  9. XtraForm

    禁用窗体大小变化 this.FormBorderStyle = System.Windows.Forms.FormBorderStyle.Fixed3D; Note:设置成FixedSingle是无效 ...

  10. 读写XML文档时,去掉新增加节点的“空命名空间”(xmlns=””)

    在做对ReprotViewer编程时,想做一个用户可以更改显示/打印列的功能,大致看了下,只需要通过对rdlc文件中改变其<Hidden>节点值为false/true,即可实现对应某列的显 ...