大意:给定$n$个圆, 圆心均在原点, 第$k$个圆半径为$\sqrt{k}$

定义一个点的美丽值为所有包含这个点的圆的编号和

定义函数$f(n)$为只有$n$个圆时所有点的贡献,求$\sum_{k=1}^{n}{f(k)}$

首先注意到每个圆上的点对答案的贡献是相同的

可以得到圆$x^2+y^2=c$上单个点的贡献为

$$\sum _{i=c}^n \sum _{j=c}^i j=\binom{n-c+2}{3}+c\binom{n-c+2}{2}$$

最后再对整个圆形区域求和就行了, 固定$x$, 则上式为$y$的一个六次多项式, 可以$O(1)$求和

所以枚举$x$就可以$O(\sqrt{n})$计算了

A Creative Cutout CodeForces - 933D (计数)的更多相关文章

  1. CF#462 div1 D:A Creative Cutout

    CF#462 div1 D:A Creative Cutout 题目大意: 原网址戳我! 题目大意: 在网格上任选一个点作为圆中心,然后以其为圆心画\(m\)个圆. 其中第\(k\)个圆的半径为\(\ ...

  2. codeforces 933D A Creative Cutout

    题目链接 正解:组合数学. 充满套路与细节的一道题.. 首先我们显然要考虑每个点的贡献(我就不信你能把$f$给筛出来 那么对于一个点$(x,y)$,我们设$L=x^{2}+y^{2}$,那么它的贡献就 ...

  3. CodeForces 558E(计数排序+线段树优化)

    题意:一个长度为n的字符串(只包含26个小字母)有q次操作 对于每次操作 给一个区间 和k k为1把该区间的字符不降序排序 k为0把该区间的字符不升序排序 求q次操作后所得字符串 思路: 该题数据规模 ...

  4. Pave the Parallelepiped CodeForces - 1007B (计数)

    大意: 给定A,B,C, 求有多少个三元组$(a,b,c)$, 满足$a \le b \le c$, 且以若干个$(a,b,c)$为三边的长方体能填满边长(A,B,C)的长方体. 暴力枚举出$A,B, ...

  5. Codeforces 1065E(计数)

    题目链接 题意 限定字符串长度为$n$,字符集规模为$A$,以及$m$个数字$b$,对于任意数字$bi$满足长度为$bi$的前缀和后缀先反转再交换位置后形成的新串与原串视作相等,问存在多少不同串. 思 ...

  6. Bug in Code CodeForces - 420C (计数,图论)

    大意: 给定$n$结点无向图, 共n条边, 有重边无自环, 求有多少点对(u,v), 满足经过u和v的边数>=p 可以用双指针先求出所有$deg_u+deg_v \ge p$的点对, 但这样会多 ...

  7. codeforces 466C 计数 codeforces 483B 二分 容斥

    题意:给你n个数,将他们分成连续的三个部分使得每个部分的和相同,求出分法的种数. 思路:用一个数组a[i]记下从第一个点到当前i点的总和.最后一个点是总和为sum的点,只需求出总和为1/3sum的点和 ...

  8. Scalar Queries CodeForces - 1167F (计数,树状数组)

    You are given an array $a_1,a_2,…,a_n$. All $a_i$ are pairwise distinct. Let's define function $f(l, ...

  9. 计数排序 + 线段树优化 --- Codeforces 558E : A Simple Task

    E. A Simple Task Problem's Link: http://codeforces.com/problemset/problem/558/E Mean: 给定一个字符串,有q次操作, ...

随机推荐

  1. python webdriver 测试框架-行为驱动例子

    安装行为驱动模块lettuce(卷心菜)模块 pip install lettuce Successfully installed argparse-1.4.0 colorama-0.3.9 extr ...

  2. leetcode_目录

    3Sum Closest 3Sum 4Sum Add Binary Add Two Numbers Anagrams Balanced Binary Tree Best Time to Buy and ...

  3. django multidb --- router

    之前一篇随笔, 提到了django中怎么使用多数据库, 但是在实际工程中遇到了一个问题,就是admin指定了使用某库, 在测试环境上没问题, 当部署后(库也变动了位置), 修改一个admin的mode ...

  4. bzoj 3505 数三角形 - 组合数学

    给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出 ...

  5. Python3基础 tuple 通过拆分元素 把元组的数据删除

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  6. Python3基础 map+lambda 将指定系列元素乘2

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  7. 棋盘状态压缩dp

    状态压缩入门DP整理 只针对入门 一般都是用2进制的方法,压缩成一个数,所以n的范围都会特变小 一些套路 状态一般是很多的,可以搜索或者位运算筛选一下,基本都是这样的吧 当要存两个状态或者数组存不下的 ...

  8. Win7系统中如何查看当前文件被哪一个程序占用了

    https://superuser.com/questions/117902/find-out-which-process-is-locking-a-file-or-folder-in-windows ...

  9. LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci

    题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...

  10. C#窗体之间事件传值

    //第二个窗体 public delegate void DAddress(string address);        public event DAddress ESignAddress; pr ...