一、引入

  前面已经指出,一切n阶矩阵A可以分成许多相似类。今要在与A相似的全体矩阵中,找出一个较简单的矩阵来作为相似类的标准形。当然以对角矩阵作为标准形最好,可惜不是每一个矩阵都能与对角矩阵相似。因此,急需引入一种较为简单而且对于一般矩阵都可由相似变换得到。

  当矩阵A能相似于某对角矩阵时,该对角矩阵就是A的一个Jordan形。而当矩阵A不能相似于对角矩阵时,它必然与一个非对角的Jordan形相似。此时的Jordan形J与对角矩阵的差别也只是在主对角线元素的上邻位有某些元素为1.在这个意义上,Jordan标准型可以说是与A相似的矩阵中最简单的了。

  Jordan标准型应用广泛。如果能够得到一个线性变换或者线性变换矩阵,那么我们可以迅速地得到线性微分方程组,特征多项式等。

二、定义

  设T是复数域C上的线性空间Vn的线性变换,任取Vn上一个基,T在该基下的矩阵是A,T(或A)的特征多项式可分解因式为

  φ(λ)=(λ-λ1)m1(λ-λ2)m2...(λ-λt)mt

  m1+m2+...+mt=n

  则Vn可分解成不变子空间的直和

  Vn=N1直和N2直和...Nt

  其中Nt=(x|(T-λiTi)mi=0,x属于Vn)是线性变换T-λiTi的核子空间。(有点看不清)

  举个例子:

  特征多项式为φ(λ)=(λ+1)2(λ-5)

  则Jordan标准型为

    -1 1                  或                     5

      -1                                        -1     1

        5                                           -1

三、简单的结论

(1)对于给定的矩阵A,在不计各Jordan块排列次序的意义下,A的Jordan标准型是唯一的。

(2)方阵A的Jordan标准型J是上三角矩阵,其主对角线上元素恰好是A的全部特征值。

(3)对角矩阵本社是Jordan形,它的每个对角元都是一个一阶的Jordan块。

四、定理

(1)两个同阶方阵相似的充要条件是它们的Jordan形一致。(忽略排序因素)

(2)矩阵A能与对角矩阵相似的充要条件是它的初等因子全为一次式。

(3)如果n阶矩阵A的全部特征值为λ1,λ2...λn,则矩阵Am的全部特征值恰是λ1m,λ2m...λnm。(这里,λ1,λ2...λn可以相同)

(4)设n阶矩阵A的全部特征值为λ1,λ2...λn,则对于任意多项式f(λ),矩阵A的全部特征值为f(λ1),f(λ2),...,f(λn)

注意:

  最后需要指出,在许多实际问题中,复数往往没有多大意义,因此,需要在实数域R上来求标准型。

参考文献

《矩阵论》 程云鹏

Jordan标准形的更多相关文章

  1. 关于Jordan标准形

    [转载请注明出处]http://www.cnblogs.com/mashiqi 2017/06/25 设$A$是$n$维线性空间$V$上的线性变换,它的特征值与相应的代数重数分别为$\lambda_i ...

  2. 实 Jordan 标准型和实 Weyr 标准型

    将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用.   实 Jordan 标准型 假设 \( ...

  3. [转载] $\mathrm{Jordan}$标准型的介绍

    本文转载自陈洪葛的博客$,$ 而实际上来自xida博客朝花夕拾$,$ 可惜该博客已经失效 $\mathrm{Jordan}$ 标准形定理是线性代数中的基本定理$,$ 专门为它写一篇长文好像有点多余$: ...

  4. [问题2014A12] 解答

    [问题2014A12]  解答 将问题转换成几何的语言: 设 \(\varphi,\psi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\varphi\psi=\psi\va ...

  5. [问题2014A13] 解答

    [问题2014A13]  解答 先引入两个简单的结论. 结论 1  设 \(\varphi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 若存在正整数 \(k\), 使得 \(\math ...

  6. 复旦大学2015--2016学年第二学期高等代数II期末考试情况分析

    一.期末考试成绩班级前几名 胡晓波(90).杨彦婷(88).宋卓卿(85).唐指朝(84).陈建兵(83).宋沛颖(82).王昊越(81).白睿(80).韩沅伯(80).王艺楷(80).张漠林(80) ...

  7. 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答

    八.(本题10分)  设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析  证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...

  8. [问题2014A10] 复旦高等代数 I(14级)每周一题(第十二教学周)

    [问题2014A10]  设 \(A\) 为 \(n\) 阶实方阵满足 \(AA'=I_n\) (即 \(A\) 为 \(n\) 阶正交阵), 证明: \[\mathrm{rank}(I_n-A)=\ ...

  9. 机器学习——logistic回归,鸢尾花数据集预测,数据可视化

    0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...

随机推荐

  1. [html]webpack网页开发打包工具

    官方文档:https://webpack.js.org/concepts/ 中文文档:https://doc.webpack-china.org/guides/installation/ 简书简介:h ...

  2. Android 获取本地外网IP、内网IP、计算机名等信息

    一.获取本地外网IP public static String GetNetIp() { URL infoUrl = null; InputStream inStream = null; try { ...

  3. thinkphp5开发的网站出现”No input file specified”(php版本5.6.27)

    thinkphp5开发的网站出现”No input file specified”(php版本5.6.27) 一.总结 一句话总结:搜索引擎一定要用google,比百度节约时间一万倍,google啊, ...

  4. CSS实现和选择器

    CSS实现和选择器 本课内容: 一.实现CSS四种方式 1,每个html标签中都有一个style样式属性,该属性的值就是css代码.(针对一个标签)2,使用style标签的方式. 一般都定义在head ...

  5. php 7.2 安装 mcrypt 扩展: mcrypt 扩展从 php 7.1.0 开始废弃;自 php 7.2.0 起,会移到 pecl

    升级 php 7.2 后,使用微信提供的加解密代码时,提示 call to undefined function mcrypt_module_open() :大脑疯狂运转1秒钟后,得出结论:php 7 ...

  6. hdoj2476 String painter

    题意:有一刷子,能将区间内涂成同一字母.给出src,dst串,问最少涂几次? 用dp[i][j]表示区间[i,j]内最少涂的次数.len=1,2时很明显.len=3时,dp[i][j]要么就在dp[i ...

  7. Confluence 6 导入 Active Directory 服务器证书 - Mac OS X

    为了让你的应用服务器能够信任你的目录服务器.你目录服务器上导出的证书需要导入到你应用服务器的 Java 运行环境中.JDK 存储了信任的证书,这个存储信任证书的文件称为一个 keystore.默认的 ...

  8. python-day46--前端基础之html

    一.html是什么? 超文本标记语言(Hypertext Markup Language,HTML)通过标签语言来标记要显示的网页中的各个部分.一套规则,浏览器认识的规则 浏览器按顺序渲染网页文件,然 ...

  9. Oracle11g温习-第九章:表空间和数据文件管理

    2013年4月27日 星期六 10:37 1.tablespace 功能:从逻辑上简化数据库的管理 2.tablespace 概述 一个database 对应多个tablespace ,一个table ...

  10. Spark任务提交底层原理

    Driver的任务提交过程 1.Driver程序的代码运行到action操作,触发了SparkContext的runJob方法.2.SparkContext调用DAGScheduler的runJob函 ...