我是Mixi的长野。 第2次第3次由前坂介绍了memcached的内部情况。本次不再介绍memcached的内部结构,开始介绍memcached的分布式。

memcached的分布式

正如第1次中介绍的那样,memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能。 服务器端仅包括第2次第3次前坂介绍的内存存储功能,其实现非常简单。至于memcached的分布式,则是完全由客户端程序库实现的。这种分布式是memcached的最大特点。

memcached的分布式是什么意思?

这里多次使用了“分布式”这个词,但并未做详细解释。 现在开始简单地介绍一下其原理,各个客户端的实现基本相同。

下面假设memcached服务器有node1~node3三台, 应用程序要保存键名为“tokyo”“kanagawa”“chiba”“saitama”“gunma” 的数据。

图1 分布式简介:准备

首先向memcached中添加“tokyo”。将“tokyo”传给客户端程序库后, 客户端实现的算法就会根据“键”来决定保存数据的memcached服务器。 服务器选定后,即命令它保存“tokyo”及其值。

图2 分布式简介:添加时

同样,“kanagawa”“chiba”“saitama”“gunma”都是先选择服务器再保存。

接下来获取保存的数据。获取时也要将要获取的键“tokyo”传递给函数库。 函数库通过与数据保存时相同的算法,根据“键”选择服务器。 使用的算法相同,就能选中与保存时相同的服务器,然后发送get命令。 只要数据没有因为某些原因被删除,就能获得保存的值。

图3 分布式简介:获取时

这样,将不同的键保存到不同的服务器上,就实现了memcached的分布式。 memcached服务器增多后,键就会分散,即使一台memcached服务器发生故障 无法连接,也不会影响其他的缓存,系统依然能继续运行。

接下来介绍第1次中提到的Perl客户端函数库Cache::Memcached实现的分布式方法。

Cache::Memcached的分布式方法

Perl的memcached客户端函数库Cache::Memcached是 memcached的作者Brad Fitzpatrick的作品,可以说是原装的函数库了。

该函数库实现了分布式功能,是memcached标准的分布式方法。

根据余数计算分散

Cache::Memcached的分布式方法简单来说,就是“根据服务器台数的余数进行分散”。 求得键的整数哈希值,再除以服务器台数,根据其余数来选择服务器。

下面将Cache::Memcached简化成以下的Perl脚本来进行说明。

use strict;
use warnings;
use String::CRC32; my @nodes = ('node1','node2','node3');
my @keys = ('tokyo', 'kanagawa', 'chiba', 'saitama', 'gunma'); foreach my $key (@keys) {
my $crc = crc32($key); # CRC値
my $mod = $crc % ( $#nodes + 1 );
my $server = $nodes[ $mod ]; # 根据余数选择服务器
printf "%s => %s\n", $key, $server;
}

Cache::Memcached在求哈希值时使用了CRC。

首先求得字符串的CRC值,根据该值除以服务器节点数目得到的余数决定服务器。 上面的代码执行后输入以下结果:

tokyo       => node2
kanagawa => node3
chiba => node2
saitama => node1
gunma => node1

根据该结果,“tokyo”分散到node2,“kanagawa”分散到node3等。 多说一句,当选择的服务器无法连接时,Cache::Memcached会将连接次数 添加到键之后,再次计算哈希值并尝试连接。这个动作称为rehash。 不希望rehash时可以在生成Cache::Memcached对象时指定“rehash => 0”选项。

根据余数计算分散的缺点

余数计算的方法简单,数据的分散性也相当优秀,但也有其缺点。 那就是当添加或移除服务器时,缓存重组的代价相当巨大。 添加服务器后,余数就会产生巨变,这样就无法获取与保存时相同的服务器, 从而影响缓存的命中率。用Perl写段代码来验证其代价。

use strict;
use warnings;
use String::CRC32; my @nodes = @ARGV;
my @keys = ('a'..'z');
my %nodes; foreach my $key ( @keys ) {
my $hash = crc32($key);
my $mod = $hash % ( $#nodes + 1 );
my $server = $nodes[ $mod ];
push @{ $nodes{ $server } }, $key;
} foreach my $node ( sort keys %nodes ) {
printf "%s: %s\n", $node, join ",", @{ $nodes{$node} };
}

这段Perl脚本演示了将“a”到“z”的键保存到memcached并访问的情况。 将其保存为mod.pl并执行。

首先,当服务器只有三台时:

$ mod.pl node1 node2 nod3
node1: a,c,d,e,h,j,n,u,w,x
node2: g,i,k,l,p,r,s,y
node3: b,f,m,o,q,t,v,z

结果如上,node1保存a、c、d、e……,node2保存g、i、k……, 每台服务器都保存了8个到10个数据。

接下来增加一台memcached服务器。

$ mod.pl node1 node2 node3 node4
node1: d,f,m,o,t,v
node2: b,i,k,p,r,y
node3: e,g,l,n,u,w
node4: a,c,h,j,q,s,x,z

添加了node4。可见,只有d、i、k、p、r、y命中了。像这样,添加节点后 键分散到的服务器会发生巨大变化。26个键中只有六个在访问原来的服务器, 其他的全都移到了其他服务器。命中率降低到23%。在Web应用程序中使用memcached时, 在添加memcached服务器的瞬间缓存效率会大幅度下降,负载会集中到数据库服务器上, 有可能会发生无法提供正常服务的情况。

mixi的Web应用程序运用中也有这个问题,导致无法添加memcached服务器。 但由于使用了新的分布式方法,现在可以轻而易举地添加memcached服务器了。 这种分布式方法称为 Consistent Hashing。

Consistent Hashing

关于Consistent Hashing的思想,mixi株式会社的开发blog等许多地方都介绍过, 这里只简单地说明一下。

Consistent Hashing的简单说明

Consistent Hashing如下所示:首先求出memcached服务器(节点)的哈希值, 并将其配置到0~2SUP(32)的圆(continuum)上。 然后用同样的方法求出存储数据的键的哈希值,并映射到圆上。 然后从数据映射到的位置开始顺时针查找,将数据保存到找到的第一个服务器上。 如果超过2SUP(32)仍然找不到服务器,就会保存到第一台memcached服务器上。

图4 Consistent Hashing:基本原理

从上图的状态中添加一台memcached服务器。余数分布式算法由于保存键的服务器会发生巨大变化 而影响缓存的命中率,但Consistent Hashing中,只有在continuum上增加服务器的地点逆时针方向的 第一台服务器上的键会受到影响。

图5 Consistent Hashing:添加服务器

因此,Consistent Hashing最大限度地抑制了键的重新分布。 而且,有的Consistent Hashing的实现方法还采用了虚拟节点的思想。 使用一般的hash函数的话,服务器的映射地点的分布非常不均匀。 因此,使用虚拟节点的思想,为每个物理节点(服务器) 在continuum上分配100~200个点。这样就能抑制分布不均匀, 最大限度地减小服务器增减时的缓存重新分布。

通过下文中介绍的使用Consistent Hashing算法的memcached客户端函数库进行测试的结果是, 由服务器台数(n)和增加的服务器台数(m)计算增加服务器后的命中率计算公式如下:

(1 - n/(n+m)) * 100

支持Consistent Hashing的函数库

本连载中多次介绍的Cache::Memcached虽然不支持Consistent Hashing, 但已有几个客户端函数库支持了这种新的分布式算法。 第一个支持Consistent Hashing和虚拟节点的memcached客户端函数库是 名为libketama的PHP库,由last.fm开发。

至于Perl客户端,连载的第1次中介绍过的Cache::Memcached::Fast和Cache::Memcached::libmemcached支持 Consistent Hashing。

两者的接口都与Cache::Memcached几乎相同,如果正在使用Cache::Memcached, 那么就可以方便地替换过来。Cache::Memcached::Fast重新实现了libketama, 使用Consistent Hashing创建对象时可以指定ketama_points选项。

my $memcached = Cache::Memcached::Fast->new({
servers => ["192.168.0.1:11211","192.168.0.2:11211"],
ketama_points => 150
});

另外,Cache::Memcached::libmemcached 是一个使用了Brain Aker开发的C函数库libmemcached的Perl模块。 libmemcached本身支持几种分布式算法,也支持Consistent Hashing, 其Perl绑定也支持Consistent Hashing。

总结

本次介绍了memcached的分布式算法,主要有memcached的分布式是由客户端函数库实现, 以及高效率地分散数据的Consistent Hashing算法。下次将介绍mixi在memcached应用方面的一些经验, 和相关的兼容应用程序。

memcached全面剖析--4. memcached的分布式算法的更多相关文章

  1. memcached完全剖析–1. memcached的基础

    系列文章导航: memcached完全剖析–1. memcached的基础 memcached全面剖析–2. 理解memcached的内存存储 memcached全面剖析–3. memcached的删 ...

  2. memcached全面剖析–4. memcached的分布式算法

    memcached的分布式 正如第1次中介绍的那样, memcached虽然称为“分布式”缓存服务器,但服务器端并没有“分布式”功能. 服务器端仅包括 第2次. 第3次 前坂介绍的内存存储功能,其实现 ...

  3. Memcached全面剖析–5. memcached的应用和兼容程序

    作者:长野雅广(Masahiro Nagano)  原文链接:http://gihyo.jp/dev/feature/01/memcached/0005 我是Mixi的长野.memcached的连载最 ...

  4. memcached全面剖析--5. memcached的应用和兼容程序

    我是Mixi的长野.memcached的连载终于要结束了.到上次为止,我们介绍了与memcached直接相关的话题,本次介绍一些mixi的案例和实际应用上的话题,并介绍一些与memcached兼容的程 ...

  5. memcached全面剖析--3.memcached的删除机制和发展方向

    下面是<memcached全面剖析>的第三部分. 发表日:2008/7/16 作者:前坂徹(Toru Maesaka) 原文链接:http://gihyo.jp/dev/feature/0 ...

  6. [转载]memcached完全剖析--1. memcached的基础

    转载自:http://charlee.li/memcached-001.html 翻译一篇技术评论社的文章,是讲memcached的连载.fcicq同学说这个东西很有用,希望大家喜欢. 发表日:200 ...

  7. memcached完全剖析--1. memcached的基础

    翻译一篇技术评论社的文章,是讲memcached的连载.fcicq同学说这个东西很有用,希望大家喜欢. 发表日:2008/7/2 作者:长野雅广(Masahiro Nagano) 原文链接:http: ...

  8. memcached全面剖析–3. memcached的删除机制和发展方向

    memcached在数据删除方面有效利用资源 数据不会真正从memcached中消失 上次介绍过, memcached不会释放已分配的内存.记录超时后,客户端就无法再看见该记录(invisible,透 ...

  9. memcached全面剖析--5

    memcached的应用和兼容程序 mixi案例研究 mixi在提供服务的初期阶段就使用了memcached. 随着网站访问量的急剧增加,单纯为数据库添加slave已无法满足需要,因此引入了memca ...

随机推荐

  1. 开源ckplayer 网页播放器去logo去广告去水印修改

    功能设置介绍 本教程涉及到以下各点,点击对应标题页面将直接滑动到相应内容: 1:修改或去掉播放器前置logo 2:修改或去掉右上角的logo 3:修改.关闭.设置滚动文字广告 4:去掉右边的开关灯分享 ...

  2. 【Spark】Sparkstreaming-共享变量-缓存RDD-到底是什么情况?

    Sparkstreaming-共享变量-缓存RDD-到底是什么情况? sparkstreaming 多个 rdd_百度搜索 Spark Streaming中空RDD处理及流处理程序优雅的停止 - xu ...

  3. hadoop集群配置SSH免登陆

    今天给大家总结一下hadoop集群之间免登陆的步骤 node1 ssh node4 1.在node1中生成密钥 [root@node1 ~]# ssh-keygen -t dsa -P '' -f ~ ...

  4. 详解Nginx + Tomcat 反向代理 如何在高效的在一台服务器部署多个站点

    转自:http://www.jb51.net/article/100111.htm 首先我们需要安装好Nginx.jdk.Tomcat,安装方法已经在 上一篇 说过了,本篇不再赘述. 下来看一下我们的 ...

  5. Node.js 笔记(一) nodejs、npm、express安装

    Windows平台下的node.js安装 直接去nodejs的官网http://nodejs.org/上下载nodejs安装程序,双击安装就可以了 测试安装是否成功: 在命令行输入 node –v 应 ...

  6. MyBatis 作用域和生命周期

    理解到目前为止所讨论的类的作用域和生命周期是非常重要的.如果使用不当可导致严重的并发性问题. SqlSessionFactoryBuilder  这个类可以在任何时候被实例化.使用和销毁.一旦您创造了 ...

  7. MySQL 存储过程/游标/事务

    将会用到的几个表 mysql> DESC products; +------------+--------------+------+-----+---------+-------------- ...

  8. WinForm 之 VS2010发布、打包安装程序

    第一步.在vs2010 打开要打包的应用程序解决方案,右键“ 解决方案 ” → “ 添加 ” → “ 新建项目 ” → “ 其他项目类型 ” → “ 安装和部署 ” → “ Visual Studio ...

  9. C++ 第一课:预处理命令

    #,## # 和 ## 操作符是和#define宏使用的. 使用# 使在#后的首个参数返回为一个带引号的字符串. 例如, 命令 #define to_string( s ) # s 将会使编译器把以下 ...

  10. localStorage 和 sessionStorage 的用法

    其实提供的接口很简单,localStorage 和 sessionStorage 的用法是一样的. 设置数据:setItem(name, value) 获取数据:getItem(name) 删除键值: ...