非参数估计——核密度估计(Parzen窗)
核密度估计,或Parzen窗,是非参数估计概率密度的一种。比如机器学习中还有K近邻法也是非参估计的一种,不过K近邻通常是用来判别样本类别的,就是把样本空间每个点划分为与其最接近的K个训练抽样中,占比最高的类别。
直方图
首先从直方图切入。对于随机变量$X$的一组抽样,即使$X$的值是连续的,我们也可以划分出若干宽度相同的区间,统计这组样本在各个区间的频率,并画出直方图。下图是均值为0,方差为2.5的正态分布。从分布中分别抽样了100000和10000个样本:

这里的直方图离散地取了21个相互无交集的区间:$[x-0.5,x+0.5), x=-10,-9,...,10$,单边间隔$h=0.5$。$h>0$在核函数估计中通常称作带宽,或窗口。每个长条的面积就是样本在这个区间内的频率。如果用频率当做概率,则面积除以区间宽度后的高,就是拟合出的在这个区间内的平均概率密度。因为这里取的区间宽度是1,所以高与面积在数值上相同,使得长条的顶端正好与密度函数曲线相契合。如果将区间中的$x$取成任意值,就可以拟合出实数域内的概率密度(其中$N_x$为样本$x_i\in [x-h,x+h),i=1,...,N$的样本数):
$\displaystyle\hat{f}(x)=\frac{N_x}{N}\cdot\frac{1}{2h}$
这就已经是核函数估计的一种了。显然,抽样越多,这个平均概率密度能拟合得越好,正如蓝条中上方几乎都与曲线契合,而橙色则稂莠不齐。另外,如果抽样数$N\to \infty$,对$h$取极限$h\to 0$,拟合出的概率密度应该会更接近真实概率密度。但是,由于抽样的数量总是有限的,无限小的$h$将导致只有在抽样点处,才有频率$1/N$,而其它地方频率全为0,所以$h$不能无限小。相反,$h$太大的话又不能有效地将抽样量用起来。所以这两者之间应该有一个最优的$h$,能充分利用抽样来拟合概率密度曲线。容易推理出,$h$应该和抽样量$N$有关,而且应该与$N$成反比。
核函数估计
为了便于拓展,将拟合概率密度的式子进行变换:
$\displaystyle\hat{f}(x)=\frac{N_x}{2hN} = \frac{1}{hN}\sum\limits_{i=1}^{N}\begin{cases}1/2& x-h\le x_i < x+h\\ 0& else \end{cases}$
$\displaystyle = \frac{1}{hN}\sum\limits_{i=1}^{N}\begin{cases} 1/2,& -1\le \displaystyle\frac{x_i-x}{h} < 1\\ 0,& else \end{cases}$
$\displaystyle = \frac{1}{hN}\sum\limits_{i=1}^{N}\displaystyle K(\frac{x_i-x}{h}),\;\; where \; K(x) =\begin{cases} 1/2,& -1\le x < 1\\ 0,& else \end{cases}$
得到的$K(x)$就是uniform核函数(也又叫方形窗口函数),这是最简单最常用的核函数。形象地理解上式求和部分,就是样本出现在$x$邻域内部的加权频数(因为除以了2,所以所谓“加权”)。核函数有很多,常见的还有高斯核函数(高斯窗口函数),即:
$\displaystyle K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$
各种核函数如下图所示:
核函数的条件
并不是所有函数都能作为核函数的,因为$\hat{f}(x)$是概率密度,则它的积分应该为1,即:
$\displaystyle\int\limits_{R}\hat{f}(x) dx = \int\limits_{R}\frac{1}{hN}\sum\limits_{i=1}^{N} K(\frac{x_i-x}{h})dx =\frac{1}{hN}\sum\limits_{i=1}^{N} \int_{-\infty}^{\infty} K(\frac{x_i-x}{h})dx$
令$\displaystyle t = \frac{x_i-x}{h}$
$\displaystyle =\frac{1}{N}\sum\limits_{i=1}^{N} \int_{\infty}^{-\infty} -K(t)dt$
$\displaystyle=\frac{1}{N}\sum\limits_{i=1}^{N} \int_{-\infty}^{\infty} K(t)dt=1$
因积分部分为定值,所以可得$K(x)$需要的条件是:
$\displaystyle\int_{-\infty}^{\infty} K(x)dx=1$
通常$K(x)$是偶函数,而且不能小于0,否则就不符合实际了。
带宽选择与核函数优劣
正如前面提到的,带宽$h$的大小关系到拟合的精度。对于方形核函数,$N\to \infty$时,$h$通常取收敛速度小于$1/N$的值即可,如$h=1/\sqrt{N}$。对于高斯核,有证明指出$\displaystyle h=\left ( \frac{4 \hat{\sigma}^5 }{3N} \right )^{\frac{1}{5}}$时,有较优的拟合效果($\hat{\sigma}^2$是样本方差)。具体的带宽选择还有更深入的算法,具体问题还是要具体分析,就先不细究了。使用高斯核时,待拟合的概率密度应该近似于高斯分布那样连续平滑的分布,如果是像均匀分布那样有明显分块的分布,拟合的效果会很差。我认为原因应该是它将离得很远的样本也用于拟合,导致本该突兀的地方都被均匀化了。
Epanechnikov在均方误差的意义下拟合效果是最好的。这也很符合直觉,越接近$x$的样本的权重本应该越高,而且超出带宽的样本权重直接为0也是符合常理的,它融合了均匀核与高斯核的优点。
多维情况
对于多维情况,假设随机变量$X$为$m$维(即$m$维向量),则拟合概率密度是$m$维的联合概率密度:
$\displaystyle \hat{f}(x)= \frac{1}{h^mN}\sum\limits_{i=1}^{N}\displaystyle K(\frac{x_i-x}{h})$
其中的$K(x)$也变成了$m$维的联合概率密度。另外,既然$\displaystyle\frac{1}{N}\sum\limits_{i=1}^{N} K(\frac{x_i-x}{h})$代表的是概率,$m$维的概率密度自然是概率除以$h^m$而不是$h$。
实验拟合情况
非参数估计——核密度估计(Parzen窗)的更多相关文章
- 非参数估计:核密度估计KDE
http://blog.csdn.net/pipisorry/article/details/53635895 核密度估计Kernel Density Estimation(KDE)概述 密度估计的问 ...
- R语言与非参数统计(核密度估计)
R语言与非参数统计(核密度估计) 核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parz ...
- parzen 窗的matlab实现
用一下程序简单实现使用parzen窗对正态分布的概率密度估计: (其中核函数选用高斯核) %run for parzen close all;clear all;clc; x=normrnd(0,1, ...
- 作图直观理解Parzen窗估计(附Python代码)
1.简介 Parzen窗估计属于非参数估计.所谓非参数估计是指,已知样本所属的类别,但未知总体概率密度函数的形式,要求我们直接推断概率密度函数本身. 对于不了解的可以看一下https://zhuanl ...
- 机器学习 —— 基础整理(三)生成式模型的非参数方法: Parzen窗估计、k近邻估计;k近邻分类器
本文简述了以下内容: (一)生成式模型的非参数方法 (二)Parzen窗估计 (三)k近邻估计 (四)k近邻分类器(k-nearest neighbor,kNN) (一)非参数方法(Non-param ...
- kdeplot(核密度估计图) & distplot
Seaborn是基于matplotlib的Python可视化库. 它提供了一个高级界面来绘制有吸引力的统计图形.Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图 ...
- 核密度估计 Kernel Density Estimation (KDE) MATLAB
对于已经得到的样本集,核密度估计是一种可以求得样本的分布的概率密度函数的方法: 通过选取核函数和合适的带宽,可以得到样本的distribution probability,在这里核函数选取标准正态分布 ...
- <轻量算法>根据核密度估计检测波峰算法 ---基于有限状态自动机和递归实现
原创博客,转载请联系博主! 希望我思考问题的思路,也可以给大家一些启发或者反思! 问题背景: 现在我们的手上有一组没有明确规律,但是分布有明显聚簇现象的样本点,如下图所示: 图中数据集是显然是个3维的 ...
- Generative Adversarial Nets (GAN)
目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成 ...
随机推荐
- 3DGIS与BIM集成集成技术及铁路桥梁可视化系统
3DGIS与BIM的集成技术 3DGIS与BIM的集成技术包括2部分:一是将Revit软件生成的BIM针对3DGIS的快速无损格式转换,这种转换包括几何信息(如形状.位置等信息)和属性信息(如建筑信息 ...
- 编译 ijg JPEG V8 库 GIF 库
libjpeg-turbo-1.2.1太老了,不支持,从内存解压,这里编译支持 jpeg_mem_src 的 JPEG V9 wget http://www.ijg.org/files/jpegsrc ...
- JavaFX之多个FXML加载和通信
前言 在使用了FXML设计布局后,新的问题随之而来,当一个程序需要多个界面时,我们不可能在一个FXML中写出全部布局,这样太过于臃肿不易查看和维护(当然非要这么做也是可以的),这里就涉及到如何在一个F ...
- Java 并发系列之一
Java 并发系列之一 简单的总结了一些 Java 常用的集合之后,发现许多集合都针对多线程提供了支持,比如 ConcurrentHashMap 使用分段锁来提高多线程环境下的性能表现与安全表现.所以 ...
- Overt.GrpcTemplate.Service 模板使用教程
阅读这篇文章需要先阅读我的另外一篇文章,目前还未发布出来,待发布中... 1. Overt.GrpcTemplate.Service .Net Core 3.1 版本 模板名称改成 Overt.Grp ...
- python基础学习day02
pycharm的安装以及简单使用 辅助开发软件,代码逐行调试,设计高端 python的种类: CPython:官方推荐可以转换成c能够识别的字节码. JPython:可以转化为Java语言能够 ...
- Linux中MySQL二进制安装步骤
MySQL二进制安装步骤 安装依赖环境 [root@node3 ~]# yum -y install libaio 将mysql-5.7.26-linux-glibc2.12-x86_64.tar.g ...
- ipadmini iOS8.4.1系统精简
主要是删除一些系统自带的应用.语言,以及关闭不需要的进程. 精简之后运行流畅性还是能看得出有所提升的.(流畅的玩点游戏还是可行的) 文件的操作可以用Filza.iFile,也可以用爱思助手,但是爱思助 ...
- 作为一位Vue工程师,这些开发技巧你都会吗?
路由参数解耦 一般在组件内使用路由参数,大多数人会这样做: export default { methods: { getParamsId() { return this.$route.params. ...
- pd库dataframe基本操作
一.查看数据(查看对象的方法对于Series来说同样适用) 1.查看DataFrame前xx行或后xx行 a=DataFrame(data); a.head(6)表示显示前6行数据,若head()中不 ...