我们不推荐使用pickle或cPickle来保存Keras模型

你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

  • 模型的结构,以便重构该模型
  • 模型的权重
  • 训练配置(损失函数,优化器等)
  • 优化器的状态,以便于从上次训练中断的地方开始

使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译

例子:

from keras.models import load_model

model.save('my_model.h5')  # creates a HDF5 file 'my_model.h5'
del model # deletes the existing model # returns a compiled model
# identical to the previous one
model = load_model('my_model.h5')

如果你只是希望保存模型的结构,而不包含其权重或配置信息,可以使用:

# save as JSON
json_string = model.to_json() # save as YAML
yaml_string = model.to_yaml()

这项操作将把模型序列化为json或yaml文件,这些文件对人而言也是友好的,如果需要的话你甚至可以手动打开这些文件并进行编辑。

当然,你也可以从保存好的json文件或yaml文件中载入模型:

# model reconstruction from JSON:
from keras.models import model_from_json
model = model_from_json(json_string) # model reconstruction from YAML
model = model_from_yaml(yaml_string)

如果需要保存模型的权重,可通过下面的代码利用HDF5进行保存。注意,在使用前需要确保你已安装了HDF5和其Python库h5py

model.save_weights('my_model_weights.h5')

如果你需要在代码中初始化一个完全相同的模型,请使用:

model.load_weights('my_model_weights.h5')

如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:

model.load_weights('my_model_weights.h5', by_name=True)

例如:

"""
假如原模型为:
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1"))
model.add(Dense(3, name="dense_2"))
...
model.save_weights(fname)
"""
# new model
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1")) # will be loaded
model.add(Dense(10, name="new_dense")) # will not be loaded # load weights from first model; will only affect the first layer, dense_1.
model.load_weights(fname, by_name=True)

如何保存Keras模型的更多相关文章

  1. Sklearn,TensorFlow,keras模型保存与读取

    一.sklearn模型保存与读取 1.保存 from sklearn.externals import joblib from sklearn import svm X = [[0, 0], [1, ...

  2. 保存及读取keras模型参数

    转自:http://blog.csdn.net/u010159842/article/details/54407745,感谢分享~ 你可以使用model.save(filepath)将Keras模型和 ...

  3. Keras模型的保存方式

    Keras模型的保存方式 在运行并且训练出一个模型后获得了模型的结构与许多参数,为了防止再次训练以及需要更好地去使用,我们需要保存当前状态 基本保存方式 h5 # 此处假设model为一个已经训练好的 ...

  4. Keras官方中文文档:关于Keras模型

    关于Keras模型 Keras有两种类型的模型,序贯模型(Sequential)和函数式模型(Model),函数式模型应用更为广泛,序贯模型是函数式模型的一种特殊情况. 两类模型有一些方法是相同的: ...

  5. 将keras模型在django中应用时出现的小问题——ValueError: Tensor Tensor("dense_2/Softmax:0", shape=(?, 8), dtype=float32) is not an element of this graph.

    本文原出处(感谢作者提供):https://zhuanlan.zhihu.com/p/27101000 将keras模型在django中应用时出现的小问题 王岳王院长 10 个月前 keras 一个做 ...

  6. keras模型可视化及解决'Failed to import pydot'问题

    1.keras模型可视化 keras.utils.vis_utils模块提供了画出Keras模型的函数(利用graphviz) 该函数将画出模型结构图,并保存成图片: from keras.utils ...

  7. auto-keras 测试保存导入模型

    # coding:utf-8 import time import matplotlib.pyplot as plt from autokeras import ImageClassifier# 保存 ...

  8. 【tf.keras】tf.keras模型复现

    keras 构建模型很简单,上手很方便,同时又是 tensorflow 的高级 API,所以学学也挺好. 模型复现在我们的实验中也挺重要的,跑出了一个模型,虽然我们可以将模型的 checkpoint ...

  9. keras 模型简介

    keras模型在keras中主要有两种模型,顺序模型,以及模型类(类的内部有函数) model.layers 是层的列表,他们组成了模型 model.inputs 是模型输入的张量 model.out ...

随机推荐

  1. yarn storm spark

    单机zookeeper http://coolxing.iteye.com/blog/1871009 storm http://os.51cto.com/art/201309/411003_2.htm ...

  2. 关于boostrap的TAB切换 ,如何获取?

    $('a[data-toggle="tab"]').on('shown.bs.tab', function (e) {    // 获取已激活的标签页的名称    var acti ...

  3. consul生产实战

    pwd:/home/appadmin wget https://releases.hashicorp.com/consul/1.6.1/consul_1.6.1_linux_amd64.zip unz ...

  4. 春节前“摸鱼”指南——SCA命令行工具助你快速构建FaaS服务

    春节将至,身在公司的你是不是已经完全丧失了工作的斗志? 但俗话说得好:"只要心中有沙,办公室也能是马尔代夫." 职场人如何才能做到最大效能地带薪"摸鱼",成为了 ...

  5. DevOps专题|Lua引擎打造超轻量级客户端

    Lua 作为一门轻量级脚本语言,源码使用标准C语言发布,语法简洁,非常适合嵌入式.客户端.游戏等场景. Lua引擎语言特点 轻量级 源码简单,以lua最新版5.3.5为例,加上lua自身提供的lib库 ...

  6. Python __name__="__main__"的作用

    该语句加在模块的最后,可以让这个模块,即可以被别人import,又可以直接运行. fibo.py文件: def fibo(): pass # fibo函数的内容 if __name__==" ...

  7. 每天一点点之vue框架开发 - axios拦截器的使用

    <script> import axios from 'axios' export default { name: 'hello', data () { return { msg: 'We ...

  8. 洛谷 AT2827 LIS

    题目传送门 解题思路: 用f[i]表示长度为i的最长上升子序列的最小的末尾. AC代码: #include<iostream> #include<cstdio> #includ ...

  9. SpringCloud学习之Stream消息驱动【默认通道】(十)

    在实际开发过程中,服务与服务之间通信经常会使用到消息中间件,而以往使用了中间件比如RabbitMQ,那么该中间件和系统的耦合性就会非常高,如果我们要替换为Kafka那么变动会比较大,这时我们可以使用S ...

  10. 关于win10 使用eclipse如何配置环境变量

    关于环境变量的配置,在百度上有很多教程,但对于我来说完成这步操作确实不简单,所以决定在这里分享一下配置方法. 1.安装好jdk/jre.  官网都有安装文件,仔细一些,就能安装成功,可以自定义安装路径 ...