图解Knative核心组件Serving基础设计
最近闲下来,打算把Knative的核心组件Serving给学习下,会继续采用k8s源码学习的方式,管中窥豹以小击大,学习serving的主要目标: 可观测性基础设施、自动伸缩、流量管理等核心组件的设计与实现,今天先简单臆测下,感兴趣的同学, 一起来学习吧
1. 基于云原生的单体应用构建
大多数公司的服务可能都已经经过单体、SOA演进到了当下流行的微服务架构,微服务给我们带来了独立演进、扩容、协作、数据自治等便利的背景下,也带来了诸如稳定性保障、维护、服务治理等实际的问题,我们今天来一起来回归单体,比如我们要新开一个业务,新上一个小的模块这个场景,在云原生的场景下,是如何玩的
1.1 云原生下的单体应用
云原生有很多大佬有很多的解释,我就简单理解成是基于云构建而来,可以使用云上所有已知的现有的服务,同时享受云所带来的弹性、按需付费、高可用等方面的原生能力
一个基础的单体应用通常会依赖如下几部分:持久化数据存储、高性能缓存、全文索引、消息队列等常见组件, 各家云厂商大多数会包含这些基础的服务,我们只需要引入对应的类库完成我们的应用逻辑即可, 然后程序就完成代码的coding后,下一步就是交付了
1.2 基于k8s的云原生交付
基于k8s的云原生已经成为一个事实上的标准,将代码和应用的数据打包成docker镜像,基于Pod的交付模式,让我们并不需要关注我们是使用IDC里面的实体机,还是公有云的云服务,我们只需要打包成docker镜像,然后设置好档期环境的配置数据,我们的单体应用就可以运行了, 但是通常我们会有一些非业务需求, 比如监控、日志等, 下一节我们来解决这些问题
1.3 slidecar模式
在应用开发的初期,我们可能并没有考虑监控、日志这种可观测性的需求,通常是在上线的时候才会考虑这些,而基于k8s的云原生的环境下,通常会使用一个slidecar来实现这种基础功能的增强,通过嵌入一个slidecar容器完成这种基础组件的复用,可以基于slidecar模式实现日志、监控、分布式跟踪、Https支持等基础功能,而让上层应用只关注业务逻辑的实现
1.4 服务即基础设施
在公司中通常一个业务往往都会进行一些公司内部系统的接入,比如用户、支付、运营等服务,如果公司的服务也可以与基础设施同等对待,并且这些服务也可以通过k8s的形式进行交付,则我们就可以只关注单体应用自身的扩展(小前台)
通过上面的设想我们构建出了一个基础的单体应用,应用程序只需要关注应用逻辑的编写,全部的业务逻辑都耦合在一个应用内,其余的基础设施、非业务需求全都由其他组件实现,接下来就该部署了,通常我们就需要分配个XHXG配置的Pod,然后为了高可用可能还需要N个replicaset,然后再来个HPA体验下自动伸缩,跑了一段时间可能会发现,可能一天就两个巴掌的访问量,可是依旧占用着N*XHXG的资源,以这个角度我们来进入我们今天的主题Knative
2.Knative
Knative还在不断变化中,一些设计文档也并没有对外开放,读起来就相对k8s难一些,但整体代码量相比较也少了一些,在后续的文章里面我们还是先管中窥豹,逐个组件进行代码阅读,但因为没有相关的Proposal, 主要是参考冬岛大神的相关文章来进行代码的阅读,只是个人理解,如有不对,欢迎指教,接下来我们看看knative是如何完成上面提到的功能与实现按需分配关键组件, 我们从流量入口开始依次介绍各个组件
2.1 基于Istio实现南北向流量的管控
在k8s中南北向流量通常由Ingress来进行管控,而在kantive流量管控的实现,主要是依赖于istio, Istio是一个ServiceMesh框架,Knative中与其集成主要是使用了istio的南北向流量管控的功能,其实就是利用istio对应的ingress的功能, 主要功能分为下面两个部分
2.1.1 版本部署管理
Knative里面支持蓝绿、金丝雀等发布策略,其核心就是通过自己的revision版本管理和istio中的ingress的路由配置功能,即我们可以根据自己的需要设定对应的流量策略,从而进行版本的发布配置管理
2.1.2 自动伸缩(至零)
Knative自动伸缩有两个特点:按需自动分配、缩容至零,按需分配时指的knative可以根据应用的并发能力,来自动计算实现自动扩容,而且整个基本上是秒级,不同于HPA, 其次是就是缩容至零,即可以将对应的业务容器Pod,全部干掉,但是新进入请求之后会立即进行分配,并不影响正常访问(可能初期延迟会相对高一些)
2.2 Queue slidecar
在上面到过可观测性需求,在应用服务中通常可以分为三个部分:日志、监控、分布式跟踪,为了实现这些功能Knative实现了Queue组件,其职责目前理解主要是分为两个部分:完成观测性数据收集、代理业务容器的访问, Queue组件通过代理的方式实现上面提到指标的统计, 并将对应的数据汇报给后端的日志/监控/分布式跟踪服务, 同时还需要向autoscaler同步当前的并发监控, 以便实现自动伸缩功能, Queue主要是代理应用容器, 而Kantive支持缩容至零的特性, 在缩容至零的时候, Knative就会使用一个Activator Pod来替代Queue和应用容器,从而实现缩容至零
2.3 Activator
Activator容器是缩容至零的关键,当业务容器没有访问的时候,Knative就会将对应的ingress流量指向Activator组件,当缩容至零的时候,如果此时又业务请求,Activator会立即通知autoscaler立刻拉起业务容器,并将流量转发真正的业务容器,这样既可以完成流量的无损转发,又可以实现按需付费,再也不用为没有访问量的业务,一直启动着Pod了, Activator并不负责实际的伸缩决策,伸缩组件主要是通过Autoscaler来实现
2.4 Autoscaler
Autoscaler是Knative中实现自动扩容的关键,其通过Activator和Queue两个组件传递过来的监控数据并根据配置来计算,实时动态的调整业务容器的副本数量,从而实现自动伸缩
2.5 Controller
Controller是Knative对应资源的控制器,其本身的功能跟k8s中其他的组件的实现类似,根据资源的当前状态和期望状态来进行一致性调整,从而实现最终一致性
2.6 webhook
Knative是基于k8s的CRD实现的,其webhook主要包含对应资源数据的验证和修改等admission相关
3. 总结
结合上面的组件功能猜想,大概猜想了核心的数据流的实现,如图所示,我们可以分为五层来考虑:观测层(Queue和Activator)、决策层(Autoscaler)、控制层(Controller)、准入层(Webhook)、路由层(Istio INgress), 通过观测层实时获取用户请求数据,发给决策层进行决策,并将决策结果写入到Apiserver, 控制层感知,负责进行对应资源的更新,最终由路由层感知,进行流量分配,这样就实现了整体流量的感知、决策、路由等核心功能,暂时就理解这些,后续希望随着代码的深入,有更深的体会,祝我好运,good luck!
原文 https://www.yuque.com/baxiaoshi/tyado3/up5efq
图解Knative核心组件Serving基础设计的更多相关文章
- tableview前端基础设计(初级版)
tableView前端基础设计 实现的最终效果 操作目的:熟悉纯代码编辑TableView和常用的相关控件SearchBar.NavigationBar.TabBar等,以及布局和基本功能的实现. 一 ...
- 20155219实验四 Android开发基础设计实验报告
20155219实验四 Android开发基础设计实验报告 实验内容 安装Andriod Studio并配置软件 使用Andriod Studio软件实现Hello World!+学号的小程序 实验步 ...
- FPGA基础设计(四):IIC协议
很多数字传感器.数字控制的芯片(DDS.串行ADC.串行DAC)都是通过IIC总线来和控制器通信的.不过IIC协议仍然是一种慢速的通信方式,标准IIC速率为100kbit/s,快速模式速率为400kb ...
- 20155227 《Java程序设计》实验四 Android开发基础设计实验报告
20155227 <Java程序设计>实验四 Android开发基础设计实验报告 任务一 Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二 ...
- 20145219 《Java程序设计》实验四 Android开发基础设计实验报告
20145219 <Java程序设计>实验四 Android开发基础设计实验报告 实验内容 安装Andriod Studio并配置软件 使用Andriod Studio软件实现Hello ...
- 图解kubernetes调度器预选设计实现学习
Scheduler中在进行node选举的时候会首先进行一轮预选流程,即从当前集群中选择一批node节点,本文主要分析k8s在预选流程上一些优秀的筛选设计思想,欢迎大佬们指正 1. 基础设计 1.1 预 ...
- 轻量jquery框架之--组件交互基础设计
概要 组件交互基础,即考虑在JQUERY对象下($)下扩展所有组件都需要用到的通用api,如ajax入口.对表单的操作.html片段加载.通用的配合datagrid通用的curd客户端对象等. 扩展a ...
- Dubbo的核心组件、架构设计与Dubbo面试考点
1.Dubbo是什么? Dubbo 是一个分布式.高性能.透明化的 RPC 服务框架,提供服务自动注册.自动发现等高效服务治理方案, 可以和 Spring 框架无缝集成. RPC 指的是远程调用协议, ...
- DAO层基础设计原理
在实际的开发中有一种项目的程序组织架构方案叫做MVC模式,按照程序 的功能将他们分成三个层,如下图 Modle层(模型层).View层(显示层).Controller层(控制层). Modle层:可以 ...
随机推荐
- OpenCV-Python 图像阈值 | 十五
目标 在本教程中,您将学习简单阈值,自适应阈值和Otsu阈值. 你将学习函数cv.threshold和cv.adaptiveThreshold. 简单阈值 在这里,问题直截了当.对于每个像素,应用相同 ...
- coding++:Idea设置Java类注释模板和方法注释模板
设置类注释模板 1):选择File–>Settings–>Editor–>File and Code Templates–>Includes–>File Header. ...
- 透过 ReentrantLock 分析 AQS 的实现原理
对于 Java 开发者来说,都会碰到多线程访问公共资源的情况,这时候,往往都是通过加锁来保证访问资源结果的正确性.在 java 中通常采用下面两种方式来解决加锁得问题: synchronized 关键 ...
- 数据结构与算法复习-----leetcodeOJ题解
Isomorphic Strings Given two strings s and t, determine if they are isomorphic. Two strings are isom ...
- Spring Boot 中自定义 SpringMVC 配置,到底继承谁哪一个类或则接口?
看了这篇文章,写的非常的言简意赅,特此记录下: 1.Spring Boot 1.x 中,自定义 SpringMVC 配置可以通过继承 WebMvcConfigurerAdapter 来实现. 2.Sp ...
- Spring-Cloud-Netflix-系统架构
目录 系统架构 概述 集中式架构 概述 特点 垂直拆分 概述 特点 系统架构分类 微服务 微服务的特点: 分布式服务: 微服务和分布式的区别: 微服务要面临的问题: springClould是什么 远 ...
- 【Redis】集群NetCore实战
环境准备 1. Redis集群(Windows集群搭建) 启动Redis集群,给每个节点加上Title start .conf start .conf start .conf start .conf ...
- WeixinJSBridge API使用实例
<span style="color: rgb(51, 51, 51); font-family: tahoma, arial, 宋体; font-size: 14px; line-h ...
- Spring 中使用 WebSocket 笔记
编写 WebSocket 消息处理类,比较简单的方式就是直接继承AbstractWebSocketHandler,并覆写其中的处理方法,下面为一个简单的 demo public class WebSo ...
- es--es分词的一些分析技巧
查看某个字段的分词结果 POST /index/tyhpe/id/_termvectors?fields=fields_name 例如:http://localhost:9200/prod_membe ...