词嵌入基础

我们在“循环神经网络的从零开始实现”一节中使用 one-hot 向量表示单词,虽然它们构造起来很容易,但通常并不是一个好选择。一个主要的原因是,one-hot 词向量无法准确表达不同词之间的相似度,如我们常常使用的余弦相似度。

Word2Vec 词嵌入工具的提出正是为了解决上面这个问题,它将每个词表示成一个定长的向量,并通过在语料库上的预训练使得这些向量能较好地表达不同词之间的相似和类比关系,以引入一定的语义信息。基于两种概率模型的假设,我们可以定义两种 Word2Vec 模型:

  1. Skip-Gram 跳字模型:假设背景词由中心词生成,即建模 P(wo∣wc)P(w_o\mid w_c)P(wo​∣wc​),其中 wcw_cwc​ 为中心词,wow_owo​ 为任一背景词;

  1. CBOW (continuous bag-of-words) 连续词袋模型:假设中心词由背景词生成,即建模 P(wc∣Wo)P(w_c\mid \mathcal{W}_o)P(wc​∣Wo​),其中 Wo\mathcal{W}_oWo​ 为背景词的集合。

在这里我们主要介绍 Skip-Gram 模型的实现,CBOW 实现与其类似,读者可之后自己尝试实现。后续的内容将大致从以下四个部分展开:

  1. PTB 数据集
  2. Skip-Gram 跳字模型
  3. 负采样近似
  4. 训练模型
import collections
import math
import random
import sys
import time
import os
import numpy as np
import torch
from torch import nn
import torch.utils.data as Data

PTB 数据集

简单来说,Word2Vec 能从语料中学到如何将离散的词映射为连续空间中的向量,并保留其语义上的相似关系。那么为了训练 Word2Vec 模型,我们就需要一个自然语言语料库,模型将从中学习各个单词间的关系,这里我们使用经典的 PTB 语料库进行训练。PTB (Penn Tree Bank) 是一个常用的小型语料库,它采样自《华尔街日报》的文章,包括训练集、验证集和测试集。我们将在PTB训练集上训练词嵌入模型。

载入数据集

数据集训练文件 ptb.train.txt 示例:

aer banknote berlitz calloway centrust cluett fromstein gitano guterman ...
pierre N years old will join the board as a nonexecutive director nov. N
mr. is chairman of n.v. the dutch publishing group
...
with open('/home/kesci/input/ptb_train1020/ptb.train.txt', 'r') as f:
lines = f.readlines() # 该数据集中句子以换行符为分割
raw_dataset = [st.split() for st in lines] # st是sentence的缩写,单词以空格为分割
print('# sentences: %d' % len(raw_dataset)) # 对于数据集的前3个句子,打印每个句子的词数和前5个词
# 句尾符为 '' ,生僻词全用 '' 表示,数字则被替换成了 'N'
for st in raw_dataset[:3]:
print('# tokens:', len(st), st[:5])
# sentences: 42068
# tokens: 24 ['aer', 'banknote', 'berlitz', 'calloway', 'centrust']
# tokens: 15 ['pierre', '<unk>', 'N', 'years', 'old']
# tokens: 11 ['mr.', '<unk>', 'is', 'chairman', 'of']

建立词语索引

counter = collections.Counter([tk for st in raw_dataset for tk in st]) # tk是token的缩写
counter = dict(filter(lambda x: x[1] >= 5, counter.items())) # 只保留在数据集中至少出现5次的词 idx_to_token = [tk for tk, _ in counter.items()]
token_to_idx = {tk: idx for idx, tk in enumerate(idx_to_token)}
dataset = [[token_to_idx[tk] for tk in st if tk in token_to_idx]
for st in raw_dataset] # raw_dataset中的单词在这一步被转换为对应的idx
num_tokens = sum([len(st) for st in dataset])
'# tokens: %d' % num_tokens
'# tokens: 887100'

二次采样

文本数据中一般会出现一些高频词,如英文中的“the”“a”和“in”。通常来说,在一个背景窗口中,一个词(如“chip”)和较低频词(如“microprocessor”)同时出现比和较高频词(如“the”)同时出现对训练词嵌入模型更有益。因此,训练词嵌入模型时可以对词进行二次采样。 具体来说,数据集中每个被索引词 wiw_iwi​ 将有一定概率被丢弃,该丢弃概率为

$$

P(w_i)=\max(1-\sqrt{\frac{t}{f(w_i)}},0)

$$

其中 f(wi)f(w_i)f(wi​) 是数据集中词 wiw_iwi​ 的个数与总词数之比,常数 ttt 是一个超参数(实验中设为 10−410^{−4}10−4)。可见,只有当 f(wi)>tf(w_i)>tf(wi​)>t 时,我们才有可能在二次采样中丢弃词 wiw_iwi​,并且越高频的词被丢弃的概率越大。具体的代码如下:

def discard(idx):
'''
@params:
idx: 单词的下标
@return: True/False 表示是否丢弃该单词
'''
return random.uniform(0, 1) < 1 - math.sqrt(
1e-4 / counter[idx_to_token[idx]] * num_tokens) subsampled_dataset = [[tk for tk in st if not discard(tk)] for st in dataset]
print('# tokens: %d' % sum([len(st) for st in subsampled_dataset])) def compare_counts(token):
return '# %s: before=%d, after=%d' % (token, sum(
[st.count(token_to_idx[token]) for st in dataset]), sum(
[st.count(token_to_idx[token]) for st in subsampled_dataset])) print(compare_counts('the'))
print(compare_counts('join'))
# tokens: 375995
# the: before=50770, after=2161
# join: before=45, after=45

提取中心词和背景词

def get_centers_and_contexts(dataset, max_window_size):
'''
@params:
dataset: 数据集为句子的集合,每个句子则为单词的集合,此时单词已经被转换为相应数字下标
max_window_size: 背景词的词窗大小的最大值
@return:
centers: 中心词的集合
contexts: 背景词窗的集合,与中心词对应,每个背景词窗则为背景词的集合
'''
centers, contexts = [], []
for st in dataset:
if len(st) < 2: # 每个句子至少要有2个词才可能组成一对“中心词-背景词”
continue
centers += st
for center_i in range(len(st)):
window_size = random.randint(1, max_window_size) # 随机选取背景词窗大小
indices = list(range(max(0, center_i - window_size),
min(len(st), center_i + 1 + window_size)))
indices.remove(center_i) # 将中心词排除在背景词之外
contexts.append([st[idx] for idx in indices])
return centers, contexts all_centers, all_contexts = get_centers_and_contexts(subsampled_dataset, 5) tiny_dataset = [list(range(7)), list(range(7, 10))]
print('dataset', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('center', center, 'has contexts', context)
dataset [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
center 0 has contexts [1, 2]
center 1 has contexts [0, 2, 3]
center 2 has contexts [0, 1, 3, 4]
center 3 has contexts [2, 4]
center 4 has contexts [3, 5]
center 5 has contexts [4, 6]
center 6 has contexts [5]
center 7 has contexts [8]
center 8 has contexts [7, 9]
center 9 has contexts [7, 8]

注:数据批量读取的实现需要依赖负采样近似的实现,故放于负采样近似部分进行讲解。

Skip-Gram 跳字模型

在跳字模型中,每个词被表示成两个 ddd 维向量,用来计算条件概率。假设这个词在词典中索引为 iii ,当它为中心词时向量表示为 vi∈Rd\boldsymbol{v}_i\in\mathbb{R}^dvi​∈Rd,而为背景词时向量表示为 ui∈Rd\boldsymbol{u}_i\in\mathbb{R}^dui​∈Rd 。设中心词 wcw_cwc​ 在词典中索引为 ccc,背景词 wow_owo​ 在词典中索引为 ooo,我们假设给定中心词生成背景词的条件概率满足下式:

$$

P(w_o\mid w_c)=\frac{\exp(\boldsymbol{u}_o^\top \boldsymbol{v}c)}{\sum{i\in\mathcal{V}}\exp(\boldsymbol{u}_i^\top \boldsymbol{v}_c)}

$$

PyTorch 预置的 Embedding 层

embed = nn.Embedding(num_embeddings=10, embedding_dim=4)
print(embed.weight) x = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.long)
print(embed(x))
Parameter containing:
tensor([[-0.7417, -1.9469, -0.5745, 1.4267],
[ 1.1483, 1.4781, 0.3064, -0.2893],
[ 0.6840, 2.4566, -0.1872, -2.2061],
[ 0.3386, 1.3820, -0.3142, 0.2427],
[ 0.4802, -0.6375, -0.4730, 1.2114],
[ 0.7130, -0.9774, 0.5321, 1.4228],
[-0.6726, -0.5829, -0.4888, -0.3290],
[ 0.3152, -0.6827, 0.9950, -0.3326],
[-1.4651, 1.2344, 1.9976, -1.5962],
[ 0.0872, 0.0130, -2.1396, -0.6361]], requires_grad=True)
tensor([[[ 1.1483, 1.4781, 0.3064, -0.2893],
[ 0.6840, 2.4566, -0.1872, -2.2061],
[ 0.3386, 1.3820, -0.3142, 0.2427]], [[ 0.4802, -0.6375, -0.4730, 1.2114],
[ 0.7130, -0.9774, 0.5321, 1.4228],
[-0.6726, -0.5829, -0.4888, -0.3290]]], grad_fn=<EmbeddingBackward>)

PyTorch 预置的批量乘法

X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
print(torch.bmm(X, Y).shape)
torch.Size([2, 1, 6])

Skip-Gram 模型的前向计算

def skip_gram(center, contexts_and_negatives, embed_v, embed_u):
'''
@params:
center: 中心词下标,形状为 (n, 1) 的整数张量
contexts_and_negatives: 背景词和噪音词下标,形状为 (n, m) 的整数张量
embed_v: 中心词的 embedding 层
embed_u: 背景词的 embedding 层
@return:
pred: 中心词与背景词(或噪音词)的内积,之后可用于计算概率 p(w_o|w_c)
'''
v = embed_v(center) # shape of (n, 1, d)
u = embed_u(contexts_and_negatives) # shape of (n, m, d)
pred = torch.bmm(v, u.permute(0, 2, 1)) # bmm((n, 1, d), (n, d, m)) => shape of (n, 1, m)
return pred

负采样近似

由于 softmax 运算考虑了背景词可能是词典 V\mathcal{V}V 中的任一词,对于含几十万或上百万词的较大词典,就可能导致计算的开销过大。我们将以 skip-gram 模型为例,介绍负采样 (negative sampling) 的实现来尝试解决这个问题。

负采样方法用以下公式来近似条件概率 P(wo∣wc)=exp⁡(uo⊤vc)∑i∈Vexp⁡(ui⊤vc)P(w_o\mid w_c)=\frac{\exp(\boldsymbol{u}_o^\top \boldsymbol{v}_c)}{\sum_{i\in\mathcal{V}}\exp(\boldsymbol{u}_i^\top \boldsymbol{v}_c)}P(wo​∣wc​)=∑i∈V​exp(ui⊤​vc​)exp(uo⊤​vc​)​:

$$

P(w_o\mid w_c)=P(D=1\mid w_c,w_o)\prod_{k=1,w_k\sim P(w)}^K P(D=0\mid w_c,w_k)

$$

其中 P(D=1∣wc,wo)=σ(uo⊤vc)P(D=1\mid w_c,w_o)=\sigma(\boldsymbol{u}_o^\top\boldsymbol{v}_c)P(D=1∣wc​,wo​)=σ(uo⊤​vc​),σ(⋅)\sigma(\cdot)σ(⋅) 为 sigmoid 函数。对于一对中心词和背景词,我们从词典中随机采样 KKK 个噪声词(实验中设 K=5K=5K=5)。根据 Word2Vec 论文的建议,噪声词采样概率 P(w)P(w)P(w) 设为 www 词频与总词频之比的 0.750.750.75 次方。

def get_negatives(all_contexts, sampling_weights, K):
'''
@params:
all_contexts: [[w_o1, w_o2, ...], [...], ... ]
sampling_weights: 每个单词的噪声词采样概率
K: 随机采样个数
@return:
all_negatives: [[w_n1, w_n2, ...], [...], ...]
'''
all_negatives, neg_candidates, i = [], [], 0
population = list(range(len(sampling_weights)))
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
if i == len(neg_candidates):
# 根据每个词的权重(sampling_weights)随机生成k个词的索引作为噪声词。
# 为了高效计算,可以将k设得稍大一点
i, neg_candidates = 0, random.choices(
population, sampling_weights, k=int(1e5))
neg, i = neg_candidates[i], i + 1
# 噪声词不能是背景词
if neg not in set(contexts):
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives sampling_weights = [counter[w]**0.75 for w in idx_to_token]
all_negatives = get_negatives(all_contexts, sampling_weights, 5)

注:除负采样方法外,还有层序 softmax (hiererarchical softmax) 方法也可以用来解决计算量过大的问题,请参考原书10.2.2节

批量读取数据

class MyDataset(torch.utils.data.Dataset):
def __init__(self, centers, contexts, negatives):
assert len(centers) == len(contexts) == len(negatives)
self.centers = centers
self.contexts = contexts
self.negatives = negatives def __getitem__(self, index):
return (self.centers[index], self.contexts[index], self.negatives[index]) def __len__(self):
return len(self.centers) def batchify(data):
'''
用作DataLoader的参数collate_fn
@params:
data: 长为batch_size的列表,列表中的每个元素都是__getitem__得到的结果
@outputs:
batch: 批量化后得到 (centers, contexts_negatives, masks, labels) 元组
centers: 中心词下标,形状为 (n, 1) 的整数张量
contexts_negatives: 背景词和噪声词的下标,形状为 (n, m) 的整数张量
masks: 与补齐相对应的掩码,形状为 (n, m) 的0/1整数张量
labels: 指示中心词的标签,形状为 (n, m) 的0/1整数张量
'''
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += [context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)] # 使用掩码变量mask来避免填充项对损失函数计算的影响
labels += [[1] * len(context) + [0] * (max_len - len(context))]
batch = (torch.tensor(centers).view(-1, 1), torch.tensor(contexts_negatives),
torch.tensor(masks), torch.tensor(labels))
return batch batch_size = 512
num_workers = 0 if sys.platform.startswith('win32') else 4 dataset = MyDataset(all_centers, all_contexts, all_negatives)
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True,
collate_fn=batchify,
num_workers=num_workers)
for batch in data_iter:
for name, data in zip(['centers', 'contexts_negatives', 'masks',
'labels'], batch):
print(name, 'shape:', data.shape)
break
centers shape: torch.Size([512, 1])
contexts_negatives shape: torch.Size([512, 60])
masks shape: torch.Size([512, 60])
labels shape: torch.Size([512, 60])

训练模型

损失函数

应用负采样方法后,我们可利用最大似然估计的对数等价形式将损失函数定义为如下

$$

\sum_{t=1}^T\sum_{-m\le j\le m,j\ne 0} [-\log P(D=1\mid w{(t)},w{(t+j)})-\sum_{k=1,w_k\sim P(w)^K}\log P(D=0\mid w^{(t)},w_k)]

$$

根据这个损失函数的定义,我们可以直接使用二元交叉熵损失函数进行计算:

class SigmoidBinaryCrossEntropyLoss(nn.Module):
def __init__(self):
super(SigmoidBinaryCrossEntropyLoss, self).__init__()
def forward(self, inputs, targets, mask=None):
'''
@params:
inputs: 经过sigmoid层后为预测D=1的概率
targets: 0/1向量,1代表背景词,0代表噪音词
@return:
res: 平均到每个label的loss
'''
inputs, targets, mask = inputs.float(), targets.float(), mask.float()
res = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none", weight=mask)
res = res.sum(dim=1) / mask.float().sum(dim=1)
return res loss = SigmoidBinaryCrossEntropyLoss() pred = torch.tensor([[1.5, 0.3, -1, 2], [1.1, -0.6, 2.2, 0.4]])
label = torch.tensor([[1, 0, 0, 0], [1, 1, 0, 0]]) # 标签变量label中的1和0分别代表背景词和噪声词
mask = torch.tensor([[1, 1, 1, 1], [1, 1, 1, 0]]) # 掩码变量
print(loss(pred, label, mask)) def sigmd(x):
return - math.log(1 / (1 + math.exp(-x)))
print('%.4f' % ((sigmd(1.5) + sigmd(-0.3) + sigmd(1) + sigmd(-2)) / 4)) # 注意1-sigmoid(x) = sigmoid(-x)
print('%.4f' % ((sigmd(1.1) + sigmd(-0.6) + sigmd(-2.2)) / 3))

模型初始化

embed_size = 100
net = nn.Sequential(nn.Embedding(num_embeddings=len(idx_to_token), embedding_dim=embed_size),
nn.Embedding(num_embeddings=len(idx_to_token), embedding_dim=embed_size))

训练模型

def train(net, lr, num_epochs):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("train on", device)
net = net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
for epoch in range(num_epochs):
start, l_sum, n = time.time(), 0.0, 0
for batch in data_iter:
center, context_negative, mask, label = [d.to(device) for d in batch] pred = skip_gram(center, context_negative, net[0], net[1]) l = loss(pred.view(label.shape), label, mask).mean() # 一个batch的平均loss
optimizer.zero_grad()
l.backward()
optimizer.step()
l_sum += l.cpu().item()
n += 1
print('epoch %d, loss %.2f, time %.2fs'
% (epoch + 1, l_sum / n, time.time() - start)) train(net, 0.01, 5)
train on cpu
epoch 1, loss 0.61, time 221.30s
epoch 2, loss 0.42, time 227.70s
epoch 3, loss 0.38, time 240.50s
epoch 4, loss 0.36, time 253.79s
epoch 5, loss 0.34, time 238.51s

注:由于本地CPU上训练时间过长,故只截取了运行的结果,后同。大家可以自行在网站上训练。

测试模型

def get_similar_tokens(query_token, k, embed):
'''
@params:
query_token: 给定的词语
k: 近义词的个数
embed: 预训练词向量
'''
W = embed.weight.data
x = W[token_to_idx[query_token]]
# 添加的1e-9是为了数值稳定性
cos = torch.matmul(W, x) / (torch.sum(W * W, dim=1) * torch.sum(x * x) + 1e-9).sqrt()
_, topk = torch.topk(cos, k=k+1)
topk = topk.cpu().numpy()
for i in topk[1:]: # 除去输入词
print('cosine sim=%.3f: %s' % (cos[i], (idx_to_token[i]))) get_similar_tokens('chip', 3, net[0])
cosine sim=0.446: intel
cosine sim=0.427: computer
cosine sim=0.427: computers

参考

L24 word2vec的更多相关文章

  1. word2vec 中的数学原理详解

    word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了很多人的关注.由于 word2vec 的作者 Tomas Miko ...

  2. Java豆瓣电影爬虫——使用Word2Vec分析电影短评数据

    在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感 ...

  3. word2vec参数调整 及lda调参

     一.word2vec调参   ./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -neg ...

  4. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  5. Word2Vec 使用总结

    word2vec 是google 推出的做词嵌入(word embedding)的开源工具. 简单的说,它在给定的语料库上训练一个模型,然后会输出所有出现在语料库上的单词的向量表示,这个向量称为&qu ...

  6. Word2vec多线程(tensorflow)

    workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_ ...

  7. Word2vec 模型载入(tensorflow)

    opts = Options() with tf.Graph().as_default(), tf.Session() as session: model = Word2Vec(opts, sessi ...

  8. Forward-backward梯度求导(tensorflow word2vec实例)

    考虑不可分的例子         通过使用basis functions 使得不可分的线性模型变成可分的非线性模型 最常用的就是写出一个目标函数 并且使用梯度下降法 来计算     梯度的下降法的梯度 ...

  9. Tensorflow word2vec编译运行

    Word2vec 更完整版本(非demo)的代码在 tensorflow/models/embedding/     首先需要安装bazel 来进行编译 bazel可以下载最新的binary安装文件, ...

随机推荐

  1. MySQL学习(3)

    一 SQL语句 1. 数据库级别(*) 显示全部数据库:show databases; 创建数据库:create database '数据库名字’; 使用数据库:use '数据库名字'; 删除数据库: ...

  2. 优秀DevOps工程师必会的33个面试题

    DevOps面试问题 01 您能告诉我们DevOps和Agile(敏捷)之间的根本区别吗? 答:尽管DevOps与敏捷方法(这是最流行的SDLC[Software Development Life C ...

  3. 修改imx6ull开机LOGO(一)

    imx6ull启动的时候默认显示uboot自带的开机画面,按照如下步骤修改为我们想要的开机画面,如下: 首先去掉液晶屏右上角的打印信息   修改/drivers/video/cfb_console.c ...

  4. [源码分析] 从FlatMap用法到Flink的内部实现

    [源码分析] 从FlatMap用法到Flink的内部实现 0x00 摘要 本文将从FlatMap概念和如何使用开始入手,深入到Flink是如何实现FlatMap.希望能让大家对这个概念有更深入的理解. ...

  5. Python第五章-内置数据结构02-列表

    Python 内置的数据结构 二.列表(list) 想一想: 前面学习的字符串可以用来存储一串信息,那么想一想,怎样存储咱们班所有同学的名字呢? 定义100个变量,每个变量存放一个学生的姓名可行吗?有 ...

  6. css网页重置样式表(多版本)

    Eric reset.css html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, ...

  7. 编译器移植到.NET Core失败记录和对.NET未来感想

    .NET Core是微软力推的新平台,影响力好像还越来越大.为了对这一行业趋势有所准备,最近把自己搞的编程语言的编译器从.NET移植.NET Core,以实现跨平台在Linux上运行,然而失败了. 原 ...

  8. Spring - 事务管理概述

      什么是事务管理? 第一个问题:什么是事务? 事务一般是相对数据库而言的,对于数据库一次操作就属于一个事务, 一次操作可以是几句 SQL 语句,也可以是若干行 JDBC 的 Java 语句.事务既然 ...

  9. IntelliJ Idea 中文乱码问题

    首先,Idea真的是一款很方便的开发工具,但是关于中文乱码这个问题我不得不吐槽,这个编码也弄得这么麻烦干嘛呀...下面就说一下怎么解决中文乱码问题: 1.首先是编辑器的乱码,这个很好解决,file-& ...

  10. Python命令行执行.py文件提示ModuleNotFoundError:No module named 'XXX'解决办法

    原因:在命令行执行.py文件找不到包是因为我们没有把项目路径保存,可以通过sys.path.append()保存项目路径,执行后就能成功. ############################## ...