Apache Hadoop的三种运行环境介绍及standAlone环境搭建


三种运行环境

  • standAlone环境

    单机版的hadoop运行环境
  • 伪分布式环境

    主节点都在一台机器上,从节点分开到其他机器上(可以借助三台机器来实现)
  • 完全分布式环境

    主节点全部分散到不同机器上(NameNode Active,NameNode StandBy,ResourceManager 主节点,ResourceManager 备份节点)

standAlone环境搭建

tar -zxvf hadoop-2.7.5.tar.gz -C /export/servers/

Hadoop的本地库:/export/servers/hadoop-2.7.5/lib/native
(很重要,里面集成了一些C程序,包括了一些压缩的支持) bin/hadoop checknative 检测本地库的支持

  • 第二步:修改配置文件
cd /export/servers/hadoop-2.7.5/etc/hadoop

修改core-site.xml(核心配置文件,主要定义了我们的集群是分布式,还是本机运行)

vim core-site.xml
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://192.168.0.10:8020</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/export/servers/hadoop-2.7.5/hadoopDatas/tempDatas</value>
</property>
<!-- 缓冲区大小,实际工作中根据服务器性能动态调整 -->
<property>
<name>io.file.buffer.size</name>
<value>4096</value>
</property> <!-- 开启hdfs的垃圾桶机制,删除掉的数据可以从垃圾桶中回收,单位分钟 -->
<property>
<name>fs.trash.interval</name>
<value>10080</value>
</property>
</configuration>

修改hdfs-site.xml(分布式文件系统的核心配置,决定了我们数据存放在哪个路径,数据的副本,数据的block块大小)

vim hdfs-site.xml
<configuration>
<!-- NameNode存储元数据信息的路径,实际工作中,一般先确定磁盘的挂载目录,然后多个目录用,进行分割 -->
<!-- 集群动态上下线
<property>
<name>dfs.hosts</name>
<value>/export/servers/hadoop-2.7.4/etc/hadoop/accept_host</value>
</property> <property>
<name>dfs.hosts.exclude</name>
<value>/export/servers/hadoop-2.7.4/etc/hadoop/deny_host</value>
</property>
--> <property>
<name>dfs.namenode.secondary.http-address</name>
<value>node01:50090</value>
</property> <property>
<name>dfs.namenode.http-address</name>
<value>node01:50070</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas,file:///export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas2</value>
</property>
<!-- 定义dataNode数据存储的节点位置,实际工作中,一般先确定磁盘的挂载目录,然后多个目录用,进行分割 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas,file:///export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas2</value>
</property> <property>
<name>dfs.namenode.edits.dir</name>
<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/nn/edits</value>
</property> <property>
<name>dfs.namenode.checkpoint.dir</name>
<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/snn/name</value>
</property>
<property>
<name>dfs.namenode.checkpoint.edits.dir</name>
<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/dfs/snn/edits</value>
</property> <property>
<name>dfs.replication</name>
<value>1</value>
</property> <property>
<name>dfs.permissions</name>
<value>false</value>
</property> <property>
<name>dfs.blocksize</name>
<value>134217728</value>
</property>
</configuration>

修改hadoop-env.sh(配置我们jdk的home路径)

vim hadoop-env.sh
export JAVA_HOME=/export/servers/jdk1.8.0_141

修改mapred-site.xml(定义了我们关于mapreduce运行的一些参数)

vim mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property> <property>
<name>mapreduce.job.ubertask.enable</name>
<value>true</value>
</property> <property>
<name>mapreduce.jobhistory.address</name>
<value>node01:10020</value>
</property> <property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>node01:19888</value>
</property>
</configuration>

修改yarn-site.xml(定义我们的yarn集群)

vim yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>node01</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property> <property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
</configuration>

修改slaves(定义了我们的从节点是哪些机器,也就是DataNode和NodeManager运行在哪些机器上)

vim slaves
node01
  • 第三步:启动集群

    要启动Hadoop集群,需要启动HDFS和YARN两个模块

    注意:首次启动HDFS时,必须对其进行格式化操作,本质上是一些清理和准备工作,因为此时的HDFS在物理上还是不存在的

    hdfs namenode -format或者hadoop namenode -format

启动命令:

创建数据存放文件夹,在第一台机器执行

cd /export/servers/hadoop-2.7.5/

mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/tempDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas2
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas2
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/nn/edits
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/snn/name
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/dfs/snn/edits

准备启动:

cd /export/servers/hadoop-2.7.5/

bin/hdfs namenode -format
sbin/start-dfs.sh
sbin/start-yarn.sh
sbin/mr-jobhistory-daemon.sh start historyserver

tips

HDFS集群查看界面:node01:50070

Yarn集群查看界面:node01:8088



历史任务完成界面:node01:19888

【Hadoop离线基础总结】Apache Hadoop的三种运行环境介绍及standAlone环境搭建的更多相关文章

  1. 【Hadoop离线基础总结】Hadoop High Availability\Hadoop基础环境增强

    目录 简单介绍 Hadoop HA 概述 集群搭建规划 集群搭建 第一步:停止服务 第二步:启动所有节点的ZooKeeper 第三步:更改配置文件 第四步:启动服务 简单介绍 Hadoop HA 概述 ...

  2. 【Hadoop离线基础总结】Hadoop的架构模型

    Hadoop的架构模型 1.x的版本架构模型介绍 架构图 HDFS分布式文件存储系统(典型的主从架构) NameNode:集群当中的主节点,主要用于维护集群当中的元数据信息,以及接受用户的请求,处理用 ...

  3. 【Hadoop离线基础总结】impala简单介绍及安装部署

    目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...

  4. 【Hadoop离线基础总结】Hive调优手段

    Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...

  5. 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发

    目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...

  6. 【Hadoop离线基础总结】MapReduce自定义InputFormat和OutputFormat案例

    MapReduce自定义InputFormat和OutputFormat案例 自定义InputFormat 合并小文件 需求 无论hdfs还是mapreduce,存放小文件会占用元数据信息,白白浪费内 ...

  7. 【Hadoop离线基础总结】MapReduce入门

    MapReduce入门 Mapreduce思想 概述 MapReduce的思想核心是分而治之,适用于大量复杂的任务处理场景(大规模数据处理场景). 最主要的特点就是把一个大的问题,划分成很多小的子问题 ...

  8. 【Hadoop离线基础总结】oozie的安装部署与使用

    目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...

  9. 【Hadoop离线基础总结】Hue的简单介绍和安装部署

    目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...

随机推荐

  1. Win32 Disk Imager刻录过的U盘恢复容量的方法

    近日遇到一个问题,使用Win32 Disk Imager刻录过的U盘,想恢复使用,但无法正常使用. 按WIN+R键调出Win10运行框,输入diskmgmt.msc,打开磁盘管理工具. 看到U盘的状况 ...

  2. 并查集判树 poj 1308

    例题: poj 1308 题目大意比较简单,对任意两个点,有且仅有一条道路,也就是一棵树. 题解:一棵树中,肯定是不能有环的,而且只能由一个根节点.(没认真读题,只知道在那里判环....),所以这个题 ...

  3. mac上搭建mysql环境配置和Navicat连接mysql

    mac上搭建mysql环境配置 1.下载mysql for mac: https://downloads.mysql.com/archives/community/ 注意:mysql版本要和你的MAC ...

  4. pytorch 中序列化容器nn.Sequential

    按下图顺序搭建以及执行

  5. mysql5.7免安装版配置

    解压之后,新建一个my.ini 内容是: [mysql] # 设置mysql客户端默认字符集 default-character-set = utf8 [mysqld] #安装目录 basedir = ...

  6. xpath爬虫实战-爬取小说斗罗大陆第四部

    爬取思路 用到的第三方库文件 lxml,requests,fake_agent 用fake_agent里的UserAgent修饰爬虫 用requests进行基本的请求 用lxml进行html的分析 用 ...

  7. 关于VUE的路由地址问题

    目前我们VUE的项目都是单页面应用,路由地址全都是#以不同的锚点去分发,根目录就是 http://localhost:8080/index#/   (至于为什么不是http://localhost:8 ...

  8. 任意文件下载(pikachu)

    任意文件下载漏洞 很多网站都会提供文件下载功能,即用户可以通过点击下载链接,下载到链接所对应的文件. 但是,如果文件下载功能设计不当,则可能导致攻击者可以通过构造文件路径,从而获取到后台服务器上的其他 ...

  9. 【转载】pyinstaller的使用和几个坑

    1.-w是不显示命令窗口,  -i 图标文件的路径  这是改变图标的,但是我发现只能改变任务栏里的和命令窗口的图标,并不能改变exe文件的图标.另外这些参数要加载pyinstaller和路径中间. 2 ...

  10. HMAC算法及其应用

    HMAC算法及其应用 MAC HMAC HMAC的应用 HMAC实现举例 MAC 在现代的网络中,身份认证是一个经常会用到的功能,在身份认证过程中,有很多种方式可以保证用户信息的安全,而MAC(mes ...