题意:给n个点,可以将每个点的x,y的欧几里得距离(就是坐标系里两点距离公式)看作距离,z的差值即为费用差,求的是所有最小生成树中的min(边费用和/边距离和)。

思路:其实挑战P143有类似的列题,用的是二分枚举答案的方法,只不过不是树。这一题仅仅需要将题给图找出最小生成树,然后同样枚举即可。

虽然网上有许多高级的名词什么最优比率xxx之类的。。以及迭代的方法,不过我认为用二分也很好,易于想到也可以加深理解。

 #include <iostream>

 #include <string>

 #include <cstdio>

 #include <cstring>

 #include <cstdlib>

 #include <algorithm>

 #include <cmath>

 #define MAXN 1005

 #define INF 1000000000

 #define eps 1e-7

 using namespace std;

 int n;

 double Edge[MAXN][MAXN], lowcost[MAXN];

 int nearvex[MAXN];

 struct Point

 {

     int x, y, z;

 }p[MAXN];

 double cal(int a, int b)

 {

     return sqrt(1.0 * (p[a].x - p[b].x) * (p[a].x - p[b].x) + 1.0 * (p[a].y - p[b].y) * (p[a].y - p[b].y));

 }

 double prim(int src, double l)

 {

     double cost = , len = ;

     double sum = ;

     for(int i = ; i <= n; i++)

     {

         nearvex[i] = src;

         lowcost[i] = abs(p[src].z - p[i].z) - Edge[src][i] * l;

     }

     nearvex[src] = -;

     for(int i = ; i < n; i++)

     {

         double mi = INF;

         int v = -;

         for(int j = ; j <= n; j++)

             if(nearvex[j] != - && lowcost[j] < mi)

             {

                 v = j;

                 mi = lowcost[j];

             }

         if(v != -)

         {

             cost += abs(p[nearvex[v]].z - p[v].z);

             len += Edge[nearvex[v]][v];

             nearvex[v] = -;

             sum += lowcost[v];

             for(int j = ; j <= n; j++)

             {

                 double tmp = abs(p[v].z - p[j].z) - Edge[v][j] * l;

                 if(nearvex[j] != - && tmp < lowcost[j])

                 {

                     lowcost[j] = tmp;

                     nearvex[j] = v;

                 }

             }

         }

     }

     return sum;

 }

 int main()

 {

     while(scanf("%d", &n) != EOF && n)

     {

         for(int i = ; i <= n; i++)

             scanf("%d%d%d", &p[i].x, &p[i].y, &p[i].z);

         for(int i = ; i <= n; i++)

             for(int j = ; j <= n; j++)

                 Edge[i][j] = cal(i, j);

         double low = , high = 10.0;             //其实二分20多次已经很足够了

         double l = 0.0, r = 100.0, mid;

         while(r - l > eps)

         {

             mid = (l + r) / ;

             if(prim(, mid) >= ) l = mid;

             else r = mid;

         }

         printf("%.3f\n", r);

     }

     return ;

 }

POJ 2728 二分+最小生成树的更多相关文章

  1. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  2. POJ - 2018 二分+单调子段和

    依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...

  3. [国家集训队2012]tree(陈立杰) 题解(二分+最小生成树)

    tree 时间限制: 3 Sec  内存限制: 512 MB 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 输入 第一行V, ...

  4. POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim

    http://172.20.6.3/Problem_Show.asp?id=1636 复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子. #include< ...

  5. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  6. Desert King POJ - 2728(最优比率生产树/(二分+生成树))

    David the Great has just become the king of a desert country. To win the respect of his people, he d ...

  7. 最优比率生成树 POJ 2728 迭代或者二分

    别人解题报告的链接: http://blog.sina.com.cn/s/blog_691190870101626q.html 说明一下关于精度的问题,当结果是精确到小数点后3为,你自然要把误差定为至 ...

  8. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  9. POJ 2728 Desert King | 01分数规划

    题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...

随机推荐

  1. Mac中制作USB系统启动盘

    .iso镜像文件转 .dmg文件 hdiutil convert -format UDRW -o linuxmint.dmg ~/Desktop/linuxmint-19-cinnamon-64bit ...

  2. HNOI2018/AHOI2018 游戏

    这题放过了暴力其实就没啥意思了 虽然暴力复杂度很玄学,但是思维水平确实没啥 Description link 题意概述:现在有一条长度为 \(n\) 的链,有些边是有限制的 限制为能到某个点,才能经过 ...

  3. Vue专题-组件

    vue.js既然是框架,那就不能只是简单的完成数据模板引擎的任务,它还提供了页面布局的功能.本文详细介绍使用vue.js进行页面布局的强大工具,vue.js组件系统. Vue.js组件系统 每一个新技 ...

  4. 【hdu6613】Squrirrel 树形DP

    题意:给一个带权树,求把一条边的权值变成0,再选一个点做根,最大深度最小是多少. \(\sum n \le 10^6\) key:树形DP 题里有边权小于等于200,然而并没有什么用. 首先做出 \( ...

  5. 时间API

    1. 时间API 我们的时间在java里是long类型的整数,这个整数称之为时间戳(也叫格林威治时间),即从1970-01-01到现在为止所经过的毫秒数,单有这个时间戳是不能准确表达世界各地的时间,还 ...

  6. js实现新闻滚动-单行滚动或者多行滚动

    注明:都是转载. 先说单行滚动: --------直接复制以下代码即可试验 转载http://www.3lian.com/edu/2011/06-30/4986.html----------- < ...

  7. 吴裕雄--天生自然 JAVA开发学习:异常处理

    try { // 程序代码 }catch(ExceptionName e1) { //Catch 块 } import java.io.*; public class ExcepTest{ publi ...

  8. 绝对定位( Absolute positioning )

    绝对定位( Absolute positioning ) 之前在介绍定位体系的时候,已经简单的介绍了绝对定位和固定定位.一般情况下,这两种定位的元素, 在 3D 的可视化模型中,处于浮动元素的上方,或 ...

  9. js时间与日期

    var box = new Date(); //创建了一个日期对象:构造方法里面可以传参数,指定时间.如果没有传,就是默认当前时间alert(box); alert(Date.parse('4/12/ ...

  10. British postal system to launch parcel postboxes

    1 单词 parcel n. 包裹 pilot n. 试行计划 2 句子 1400 of the new boxes will be installed at 30 locations across ...