吴裕雄--天生自然 人工智能机器学习实战代码:线性判断分析LINEARDISCRIMINANTANALYSIS
import numpy as np
import matplotlib.pyplot as plt from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from sklearn.model_selection import train_test_split
from sklearn import datasets, linear_model,discriminant_analysis def load_data():
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
X_train=iris.data
y_train=iris.target
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #线性判断分析LinearDiscriminantAnalysis
def test_LinearDiscriminantAnalysis(*data):
X_train,X_test,y_train,y_test=data
lda = discriminant_analysis.LinearDiscriminantAnalysis()
lda.fit(X_train, y_train)
print('Coefficients:%s, intercept %s'%(lda.coef_,lda.intercept_))
print('Score: %.2f' % lda.score(X_test, y_test)) # 产生用于分类的数据集
X_train,X_test,y_train,y_test=load_data()
# 调用 test_LinearDiscriminantAnalysis
test_LinearDiscriminantAnalysis(X_train,X_test,y_train,y_test)
def plot_LDA(converted_X,y):
'''
绘制经过 LDA 转换后的数据
:param converted_X: 经过 LDA转换后的样本集
:param y: 样本集的标记
'''
fig=plt.figure()
ax=Axes3D(fig)
colors='rgb'
markers='o*s'
for target,color,marker in zip([0,1,2],colors,markers):
pos=(y==target).ravel()
X=converted_X[pos,:]
ax.scatter(X[:,0], X[:,1], X[:,2],color=color,marker=marker,label="Label %d"%target)
ax.legend(loc="best")
fig.suptitle("Iris After LDA")
plt.show() def run_plot_LDA():
'''
执行 plot_LDA 。其中数据集来自于 load_data() 函数
'''
X_train,X_test,y_train,y_test=load_data()
X=np.vstack((X_train,X_test))
Y=np.vstack((y_train.reshape(y_train.size,1),y_test.reshape(y_test.size,1)))
lda = discriminant_analysis.LinearDiscriminantAnalysis()
lda.fit(X, Y)
converted_X=np.dot(X,np.transpose(lda.coef_))+lda.intercept_
plot_LDA(converted_X,Y) # 调用 run_plot_LDA
run_plot_LDA()
def test_LinearDiscriminantAnalysis_solver(*data):
'''
测试 LinearDiscriminantAnalysis 的预测性能随 solver 参数的影响
'''
X_train,X_test,y_train,y_test=data
solvers=['svd','lsqr','eigen']
for solver in solvers:
if(solver=='svd'):
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver=solver)
else:
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver=solver,shrinkage=None)
lda.fit(X_train, y_train)
print('Score at solver=%s: %.2f' %(solver, lda.score(X_test, y_test))) # 调用 test_LinearDiscriminantAnalysis_solver
test_LinearDiscriminantAnalysis_solver(X_train,X_test,y_train,y_test)
def test_LinearDiscriminantAnalysis_shrinkage(*data):
'''
测试 LinearDiscriminantAnalysis 的预测性能随 shrinkage 参数的影响
'''
X_train,X_test,y_train,y_test=data
shrinkages=np.linspace(0.0,1.0,num=20)
scores=[]
for shrinkage in shrinkages:
lda = discriminant_analysis.LinearDiscriminantAnalysis(solver='lsqr',shrinkage=shrinkage)
lda.fit(X_train, y_train)
scores.append(lda.score(X_test, y_test))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(shrinkages,scores)
ax.set_xlabel(r"shrinkage")
ax.set_ylabel(r"score")
ax.set_ylim(0,1.05)
ax.set_title("LinearDiscriminantAnalysis")
plt.show()
# 调用 test_LinearDiscr
test_LinearDiscriminantAnalysis_shrinkage(X_train,X_test,y_train,y_test)
吴裕雄--天生自然 人工智能机器学习实战代码:线性判断分析LINEARDISCRIMINANTANALYSIS的更多相关文章
- 吴裕雄--天生自然 人工智能机器学习实战代码:ELASTICNET回归
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...
- 吴裕雄--天生自然 人工智能机器学习实战代码:LASSO回归
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model from s ...
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- 吴裕雄--天生自然python机器学习:决策树算法
我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可 ...
- 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果
在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...
- 吴裕雄--天生自然python机器学习:支持向量机SVM
基于最大间隔分隔数据 import matplotlib import matplotlib.pyplot as plt from numpy import * xcord0 = [] ycord0 ...
- 吴裕雄--天生自然python机器学习:朴素贝叶斯算法
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...
- 吴裕雄--天生自然python机器学习:机器学习简介
除却一些无关紧要的情况,人们很难直接从原始数据本身获得所需信息.例如 ,对于垃圾邮 件的检测,侦测一个单词是否存在并没有太大的作用,然而当某几个特定单词同时出现时,再辅 以考察邮件长度及其他因素,人们 ...
- 吴裕雄--天生自然python机器学习:基于支持向量机SVM的手写数字识别
from numpy import * def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i ...
随机推荐
- windows服务器搭建SVN[多项目设置方法]
https://tortoisesvn.net/downloads.html 根据系统版本进行下载,下载后正常一路正常安装. 第一.设置版本号仓库目录,比如:cdengine 第二.在cdengine ...
- 洛谷 P5018 对称二叉树
题目传送门 解题思路: 先计算每个点的子树有多少节点,然后判断每个子树是不是对称的,更新答案. AC代码: #include<iostream> #include<cstdio> ...
- c#为什么要用事物
一.事务的定义 所谓事务,它是一个操作集合,这些操作要么都执行,要么都不执行,它是一个不可分割的工作单位.典型的例子就像从网上银行系统的帐户A转帐到帐户B,它经过两个阶段:1.从帐户A取出款项.2.把 ...
- Please select an empty folder to install Android Studio
原因 当前安装的Android Studio的文件夹不是空的 解决 把路径改成一个空文件夹即可
- 11)PHP,单选框和复选框的post提交方式处理
就是一个表单中会有input的checkbox形式,那么怎么处理,就有了问题,一般采用二维数组来处理 代码展示: <!DOCTYPE html PUBLIC "-//W3C//DTD ...
- 吴裕雄--天生自然TensorFlow高层封装:使用TFLearn处理MNIST数据集实现LeNet-5模型
# 1. 通过TFLearn的API定义卷机神经网络. import tflearn import tflearn.datasets.mnist as mnist from tflearn.layer ...
- mysql创建视图和存储过程,变量
创建视图 sql>create view 视图名 as select语句; 修改视图并添加别名 sql>create or replace view empvu10 (employee_n ...
- [SDOI2010]魔法猪学院(k短路)
A*板子题.我的code只能在luogu上过,bzoj上RE/MLE不清楚为啥. 蒟蒻到AFO前2个月不到的时间才学A*,A*其实就是bfs过程中进行剪支删除没必要的搜索.然后其实上这样剪支即可:如果 ...
- [概率DP]相逢是温厚
题意 有\(n\)场比赛,他每次等概率地选择一场,选择的比赛可能有没ac过的题,他一定会ac这次比赛中的某一道,并说我好菜啊.如果全ac过了,也会说我好菜啊.求期望说多少次我好菜啊. 注意题目中每场题 ...
- log4j日志配置和使用
一.日志配置变量参数说明 1. 日志设置说明:# log4j.rootLogger = debug,stdout,D,E# 等号之后的值表示appender对象,每个apperder对象表示一个日志输 ...