NER命名实体识别,实体级level的评估,精确率、召回率和F1值
pre = "0 0 B_SONG I_SONG I_SONG 0 B_SONG I_SONG I_SONG 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B_ALBUM I_ALBUM I_ALBUM O O B_TAG I_TAG I_TAG O"
true = "0 0 B_SONG I_SONG I_SONG 0 0 0 0 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B_ALBUM I_ALBUM I_ALBUM O O B_TAG I_TAG I_TAG O" # x = x.split()
tags = [("B_SONG","I_SONG"),("B_SINGER","I_SINGER"),("B_ALBUM","I_ALBUM"),("B_TAG","I_TAG")] def _find_tag(labels,B_label="B_SONG",I_label="I_SONG"):
result = []
if isinstance(labels,str):
labels = labels.strip().split()
labels = ["O" if label =="0" else label for label in labels]
# print(labels)
for num in range(len(labels)):
if labels[num] == B_label:
song_pos0 = num
if labels[num] == I_label and labels[num-1] == B_label:
lenth = 2
for num2 in range(num,len(labels)):
if labels[num2] == I_label and labels[num2-1] == I_label:
lenth += 1
if labels[num2] == "O":
result.append((song_pos0,lenth))
break
return result def find_all_tag(labels): result = {}
for tag in tags:
res = _find_tag(labels,B_label=tag[0],I_label=tag[1])
result[tag[0].split("_")[1]] = res
return result def precision(pre_labels,true_labels):
'''
:param pre_tags: list
:param true_tags: list
:return:
'''
pre = []
if isinstance(pre_labels,str):
pre_labels = pre_labels.strip().split()
pre_labels = ["O" if label =="0" else label for label in pre_labels]
if isinstance(true_labels,str):
true_labels = true_labels.strip().split()
true_labels = ["O" if label =="0" else label for label in true_labels] pre_result = find_all_tag(pre_labels)
for name in pre_result:
for x in pre_result[name]:
if x:
if pre_labels[x[0]:x[0]+x[1]] == true_labels[x[0]:x[0]+x[1]]:
pre.append(1)
else:
pre.append(0)
return sum(pre)/len(pre) def recall(pre_labels,true_labels):
'''
:param pre_tags: list
:param true_tags: list
:return:
'''
recall = []
if isinstance(pre_labels,str):
pre_labels = pre_labels.strip().split()
pre_labels = ["O" if label =="0" else label for label in pre_labels]
if isinstance(true_labels,str):
true_labels = true_labels.strip().split()
true_labels = ["O" if label =="0" else label for label in true_labels] true_result = find_all_tag(true_labels)
for name in true_result:
for x in true_result[name]:
if x:
if pre_labels[x[0]:x[0]+x[1]] == true_labels[x[0]:x[0]+x[1]]:
recall.append(1)
else:
recall.append(0)
return sum(recall)/len(recall) def f1_score(precision,recall): return (2*precision*recall)/(precision+recall) if __name__ == '__main__':
precision = precision(pre,true)
recall = recall(pre,true)
f1 = f1_score(precision,recall)
print(precision)
print(recall)
print(f1)
NER命名实体识别,实体级level的评估,精确率、召回率和F1值的更多相关文章
- 基于BERT预训练的中文命名实体识别TensorFlow实现
BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
- NLP入门(五)用深度学习实现命名实体识别(NER)
前言 在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...
- NLP入门(四)命名实体识别(NER)
本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER). 命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领 ...
- 【神经网络】神经网络结构在命名实体识别(NER)中的应用
命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图.它是NLP领域中一些复杂任务(例如关系抽取,信息检索等)的 ...
- 2. 知识图谱-命名实体识别(NER)详解
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识 ...
- 命名实体识别(NER)
一.任务 Named Entity Recognition,简称NER.主要用于提取时间.地点.人物.组织机构名. 二.应用 知识图谱.情感分析.机器翻译.对话问答系统都有应用.比如,需要利用命名实体 ...
- NLP入门(八)使用CRF++实现命名实体识别(NER)
CRF与NER简介 CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...
- 『深度应用』NLP命名实体识别(NER)开源实战教程
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...
随机推荐
- Feign客户端实现RPC 调用
1,springcloud 中支持http调用的两种方式,RestTemplate,Feign客户端 2,Feign 客户端是一个声明式(注解方式)http 远程调用工具 3,实现方式如下: 第一步: ...
- Reactor模式和Proactor模式
Reactor 主线程往epoll内核事件表中注册socket上的读就绪事件 主线程调用epoll_wait等待socket上有数据可读 当socket上有数据可读时,epoll_wait通知主线程, ...
- html第一个程序
2020-04-05 每日一例第27天 1.打开记事本,输入html格式语言: 2.后台代码注释: <html> <head><!--标题语句--> <ti ...
- JavaScript实现哈希表
JavaScript实现哈希表 一.哈希表简介 1.1.认识哈希表 哈希表通常是基于数组实现的,但是相对于数组,它存在更多优势: 哈希表可以提供非常快速的插入-删除-查找操作: 无论多少数据,插入和删 ...
- 【Redis】集群教程(Windows)
概述 Redis集群数据分片 Redis集群节点通讯 环境准备 搭建Redis集群 测试Redis集群 概述 Redis Cluster provides a way to run a Redis i ...
- A 工艺
时间限制 : - MS 空间限制 : - KB 评测说明 : 1s,128m 问题描述 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长 ...
- MetaQNN : 与Google同场竞技,MIT提出基于Q-Learning的神经网络搜索 | ICLR 2017
论文提出MetaQNN,基于Q-Learning的神经网络架构搜索,将优化视觉缩小到单层上,相对于Google Brain的NAS方法着眼与整个网络进行优化,虽然准确率差了2-3%,但搜索过程要简单地 ...
- 【开源】使用Angular9和TypeScript开发RPG游戏(20200410版)
源代码地址 通过对于斗罗大陆小说的游戏化过程,熟悉Angular的结构以及使用TypeScript的面向对象开发方法. Github项目源代码地址 RPG系统构造 ver0.03 2020/04/10 ...
- 001_Chrome 76支持原生HTML 图片懒加载Lazy loading
Table Of Content 什么是懒加载? 语法参数及使用方式? 有哪些特点? 与js有关的实践 什么是懒加载? 技术背景 Web应用需要经常向后台服务器请求资源(通过查询数据库,是非常耗时耗资 ...
- Altium 分形天线设计
Altium 分形天线设计 程序运行界面 Cantor三分集 Koch雪花 Sierpinski垫片 源代码: Iter_Num = 4 'diedai PI = 3.1415926 Call ...