import os
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2 BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 10000
MOVING_AVERAGE_DECAY = 0.99 LOG_DIR = 'F:\\temp\\log\\'
SPRITE_FILE = 'F:\\temp\\log\\mnist_sprite.jpg'
META_FIEL = "F:\\temp\\log\\mnist_meta.tsv"
TENSOR_NAME = "FINAL_LOGITS"
def train(mnist):
# 输入数据的命名空间。
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 处理滑动平均的命名空间。
with tf.name_scope("moving_average"):
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
with tf.name_scope("train_step"):
learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if(i % 1000 == 0):
print("After %d training step(s), loss on training batch is %g." % (i, loss_value))
final_result = sess.run(y, feed_dict={x: mnist.test.images})
return final_result
def visualisation(final_result):
y = tf.Variable(final_result, name = TENSOR_NAME)
summary_writer = tf.summary.FileWriter(LOG_DIR) config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = y.name # Specify where you find the metadata
embedding.metadata_path = META_FIEL # Specify where you find the sprite (we will create this later)
embedding.sprite.image_path = SPRITE_FILE
embedding.sprite.single_image_dim.extend([28,28]) # Say that you want to visualise the embeddings
projector.visualize_embeddings(summary_writer, config) sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, os.path.join(LOG_DIR, "model"), TRAINING_STEPS) summary_writer.close()
def main(argv=None):
mnist = input_data.read_data_sets("F:\\TensorFlowGoogle\\201806-github\\datasets\\MNIST_data", one_hot=True)
final_result = train(mnist)
visualisation(final_result) if __name__ == '__main__':
main()

吴裕雄--天生自然深度学习TensorBoard可视化:projector_MNIST的更多相关文章

  1. 吴裕雄--天生自然深度学习TensorBoard可视化:命名空间

    # 1. 不同的命名空间. import tensorflow as tf with tf.variable_scope("foo"): a = tf.get_variable(& ...

  2. 吴裕雄--天生自然深度学习TensorBoard可视化:监控指标可视化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 1. 生成变量监控信息并定义生 ...

  3. 吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...

  4. 吴裕雄--天生自然深度学习TensorBoard可视化:projector_data_prepare

    import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...

  5. 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告

    实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...

  6. 吴裕雄--天生自然HADOOP学习笔记:基本环境配置

    实验目的 学习安装Java 学习配置环境变量 学习设置免密码登陆的方法 掌握Linux环境下时间同步的配置 实验原理 1.Java的安装 java是大数据的黄金语言,这和java跨平台的特性是密不可分 ...

  7. 吴裕雄--天生自然HADOOP学习笔记:使用yum安装更新软件

    实验目的 了解yum的原理及配置 学习软件的更新与安装 学习源代码编译安装 实验原理 1.编译安装 前面我们讲到了安装软件的方式,因为linux是开放源码的,我们可以直接获得源码,自己编译安装.例如: ...

  8. 吴裕雄--天生自然HADOOP学习笔记:Shell工具使用

    实验目的 学习使用xshell工具连接Linux服务器 在连上的服务器中进入用户目录 熟悉简单的文件操作命令 实验原理 熟悉shell命令是熟悉使用linux环境进行开发的第一步,我们在linux的交 ...

  9. 吴裕雄--天生自然MySQL学习笔记:MySQL UPDATE 更新

    如果需要修改或更新 MySQL 中的数据,我们可以使用 SQL UPDATE 命令来操作. 语法 以下是 UPDATE 命令修改 MySQL 数据表数据的通用 SQL 语法: UPDATE table ...

随机推荐

  1. 十六、JavaScript之%运算符

    一.代码如下 二.运行效果如下 <!DOCTYPE html> <html> <meta http-equiv="Content-Type" cont ...

  2. 七十二、SAP中内表的修改,添加条件语句,多条目修改

    一.代码如下 二.MODIFY执行前断点数据 三.查看到数据如下 四.往下单步走一步,发现有3条数据被修改 五.执行后修改如下

  3. 051-PHP求余运算

    <?php $x=10%5; //进行求余运算 $y=10%3; //进行求余运算 $z=10%6; //进行求余运算 echo $x; //输出变量x的值 echo $y; //输出变量y的值 ...

  4. css实现三角箭头(兼容IE6)

    纯css实现三角箭头有几种方式,常规的方式用css3的rotate把元素旋转45度角,无法兼容ie的主要原因是ie不支持边框透明, 第二种方法,使用chroma滤镜透明,经尝试在ie下会出现activ ...

  5. mysql第五篇 : MySQL 之 视图、触发器、存储过程、函数、事物与数据库锁

    第五篇 : MySQL 之 视图.触发器.存储过程.函数.事物与数据库锁 一.视图 视图是一个虚拟表(非真实存在的),其本质是‘根据SQL语句获取动态的数据集,并为其命名‘ ,用户使用时只需使用“名称 ...

  6. js对象等号赋值的bug

    var a = {n: 1}; var b = a; a.x = a = {n: 2}; console.log(a.x); console.log(b.x); 有道题是这样的,觉得很奇葩,分析一下 ...

  7. PHP - 验证码制作加验证

    一,主页 index.php   <!DOCTYPE html> <html lang="en"> <head> <meta charse ...

  8. 详解CentOS7安装配置vsftp搭建FTP

    安装配置vsftpd做FTP服务,我们的Web应用使用git管理进行迭代,公共文件软件存储使用开源网盘Seafile来管理,基本够用.想不到FTP的使用的场景,感觉它好像老去了,虽然现在基本没有用到这 ...

  9. 登录之后跳转到登录之前的页面 之 Referer 的坑

    简而言之:通过鼠标在页面上点击链接发送请求,请求header中会包含referer信息, 通过在浏览器地址栏书写并发送请求的,header中不会有referer信息. 为了完成登录动作成功后返回原页面 ...

  10. NCRE的JAVA二级考试大纲

    全国计算机等级考试二级 Java 语言 程序设计考试大纲(2018 年版) 基本要求 1. 掌握 Java 语言的特点.实现机制和体系结构. 2. 掌握 Java 语言中面向对象的特性. 3. 掌握 ...