参考:https://blog.csdn.net/haoji007/article/details/81035565?utm_source=blogxgwz9

首先从网上下载imagenet训练好的模型,模型下载地址

http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

可以把模型放入/caffe-master/models/bvlc_googlenet/目录下

bvlc_googlenet目录就是官方提供的googlenet模型,可以训练或者直接使用googlenet模型。

可以在这个文件夹中新建一个image文件夹,存放要检测的照片。

然后就是编写一个test.py测试程序,程序如下:

#coding=utf-8

import numpy as np

import matplotlib.pyplot as plt

import os

import PIL

from PIL import Image

caffe_root = '/home/grid/caffe-master/'

import sys

sys.path.insert(0,caffe_root+'python')

import caffe

MODEL_FILE =caffe_root+'models/bvlc_googlenet/deploy.prototxt'

PRETRAINED =caffe_root+'models/bvlc_googlenet/bvlc_googlenet.caffemodel'

#cpu模式

caffe.set_mode_cpu()

#定义使用的神经网络模型

net = caffe.Classifier(MODEL_FILE,PRETRAINED,

mean=np.load(caffe_root +'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1),

channel_swap=(2,1,0),

raw_scale=255,

image_dims=(224, 224))

imagenet_labels_filename = caffe_root +'data/ilsvrc12/synset_words.txt'

labels =np.loadtxt(imagenet_labels_filename, str, delimiter='\t')

#对目标路径中的图像,遍历并分类

for root,dirs,files inos.walk("/home/grid/caffe-master/models/bvlc_googlenet/image/"):

for file in files:

#加载要分类的图片

IMAGE_FILE = os.path.join(root,file).decode('gbk').encode('utf-8');

input_image = caffe.io.load_image(IMAGE_FILE)

#预测图片类别

prediction = net.predict([input_image])

print 'predicted class:',prediction[0].argmax()

# 输出概率最大的前5个预测结果

top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]

print labels[top_k]

然后执行程序python test.py

输入预测结果:

编写检测深度模型测试程序python的更多相关文章

  1. Kelp.Net是一个用c#编写的深度学习库

    Kelp.Net是一个用c#编写的深度学习库 基于C#的机器学习--c# .NET中直观的深度学习   在本章中,将会学到: l  如何使用Kelp.Net来执行自己的测试 l  如何编写测试 l  ...

  2. dlib人脸关键点检测的模型分析与压缩

    本文系原创,转载请注明出处~ 小喵的博客:https://www.miaoerduo.com 博客原文(排版更精美):https://www.miaoerduo.com/c/dlib人脸关键点检测的模 ...

  3. 编写高质量代码–改善python程序的建议(二)

    原文发表在我的博客主页,转载请注明出处! 建议七:利用assert语句来发现问题断言(assert)在很多语言中都存在,它主要为调试程序服务,能够快速方便地检查程序的异常或者发现不恰当的输入等,可防止 ...

  4. NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例

    1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...

  5. 编写高质量代码--改善python程序的建议(六)

    原文发表在我的博客主页,转载请注明出处! 建议二十八:区别对待可变对象和不可变对象 python中一切皆对象,每一个对象都有一个唯一的标识符(id()).类型(type())以及值,对象根据其值能否修 ...

  6. 编写高质量代码--改善python程序的建议(八)

    原文发表在我的博客主页,转载请注明出处! 建议四十一:一般情况下使用ElementTree解析XML python中解析XML文件最广为人知的两个模块是xml.dom.minidom和xml.sax, ...

  7. 编写高质量代码改善python程序91个建议学习01

    编写高质量代码改善python程序91个建议学习 第一章 建议1:理解pythonic的相关概念 狭隘的理解:它是高级动态的脚本编程语言,拥有很多强大的库,是解释从上往下执行的 特点: 美胜丑,显胜隐 ...

  8. TensorFlow文本与序列的深度模型

    TensorFlow深度学习笔记 文本与序列的深度模型 Deep Models for Text and Sequence 转载请注明作者:梦里风林Github工程地址:https://github. ...

  9. pytorch中检测分割模型中图像预处理探究

    Object Detection and Classification using R-CNNs 目标检测:数据增强(Numpy+Pytorch) - 主要探究检测分割模型数据增强操作有哪些? - 检 ...

随机推荐

  1. 51nod 1163:最高的奖励 优先队列

    1163 最高的奖励 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有N个任务,每个任务有一个最晚结束时间以及一个对应的奖励.在结束时间之前完成该 ...

  2. RIOT笔记

    RIOT笔记 2016-04-25 [资源] 维基 https://github.com/RIOT-OS/RIOT/wiki 代码 https://github.com/RIOT-OS/RIOT 网页 ...

  3. 从零开始学C++(1 变量和基本类型)

    接下来的几篇文章介绍C++的基础知识点. C++是一种静态数据类型语言,它的类型检查发生在编译时.因此,编译器必须知道程序中每一个变量对应的数据类型. 数据类型是程序的基础:它告诉我们数据的意义以及我 ...

  4. 018、Java中除法的是用,解决除法计算精度问题

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  5. CSS样式表——列表与布局

    列表方块:针对<ol></ol>和<ul></ul> 属性style="list-style:none"               ...

  6. 虚拟机下安装Maven

    1.首先需要下载maven安装包(我下载的是apache-maven-3.5.3版本) 官网下载:http://maven.apache.org/download.cgi 2.将压缩包放到虚拟机下(我 ...

  7. JAVAWEB limit 分页 (转载)

    原文来自于      https://www.jianshu.com/p/553fc76bb8eb  作者写的很不错 只是为了自己方便学习转载的  代码我就不贴了 我是 Oracle 要改一些代码 原 ...

  8. Java For 循环

    章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...

  9. thinkphp配置到二级目录,不配置到根目录,访问除首页的其他路径都是404报错

    1.在nginx的配置里面,进行重定向 vi /etc/nginx/conf.d/default.conf 2.进入编辑 location /thinkphp/public { if (!-e $re ...

  10. 《从Lucene到Elasticsearch全文检索实战》的P184页

    curl -XPOST "http://localhost:9200/_bulk?pretty" --data-binary @books.json 这句话在书中是以crul的命令 ...