数学--数论--随机算法--Pollard Rho 大数分解算法(纯模板带输出)
ACM常用模板合集
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1) res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a) return b;
if (!b)return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
int T;
ll n;
scanf("%d", &T);
while (T--)
{
scanf("%lld", &n);
pr = 0;
fid(n);
if (pr == n)
puts("Prime");
else
printf("%lld\n", pr);
}
return 0;
}
带输出的我也写了
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pr;
ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T
ll gmod(ll a, ll b, ll p)
{
ll res = 1;
while (b)
{
if (b & 1)
res = pmod(res, a, p);
a = pmod(a, a, p);
b >>= 1;
}
return res;
}
inline ll gcd(ll a, ll b)
{ //听说二进制算法特快
if (!a)
return b;
if (!b)
return a;
int t = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do
{
b >>= __builtin_ctzll(b);
if (a > b)
{
ll t = b;
b = a, a = t;
}
b -= a;
} while (b);
return a << t;
}
bool Miller_Rabin(ll n)
{
if (n == 46856248255981ll || n < 2)
return false; //强伪素数
if (n == 2 || n == 3 || n == 7 || n == 61 || n == 24251)
return true;
if (!(n & 1) || !(n % 3) || !(n % 61) || !(n % 24251))
return false;
ll m = n - 1, k = 0;
while (!(m & 1))
k++, m >>= 1;
for (int i = 1; i <= 20; ++i) // 20为Miller-Rabin测试的迭代次数
{
ll a = rand() % (n - 1) + 1, x = gmod(a, m, n), y;
for (int j = 1; j <= k; ++j)
{
y = pmod(x, x, n);
if (y == 1 && x != 1 && x != n - 1)
return 0;
x = y;
}
if (y != 1)
return 0;
}
return 1;
}
ll Pollard_Rho(ll x)
{
ll n = 0, m = 0, t = 1, q = 1, c = rand() % (x - 1) + 1;
for (ll k = 2;; k <<= 1, m = n, q = 1)
{
for (ll i = 1; i <= k; ++i)
{
n = (pmod(n, n, x) + c) % x;
q = pmod(q, abs(m - n), x);
}
t = gcd(x, q);
if (t > 1)
return t;
}
}
map<long long, int> m;
void fid(ll n)
{
if (n == 1)
return;
if (Miller_Rabin(n))
{
pr = max(pr, n);
m[n]++;
return;
}
ll p = n;
while (p >= n)
p = Pollard_Rho(p);
fid(p);
fid(n / p);
}
int main()
{
int T;
ll n;
scanf("%d", &T);
while (T--)
{
m.clear();
scanf("%lld", &n);
pr = 0;
fid(n);
if (pr == n)
puts("Prime");
else
{
printf("%lld\n", pr);
for (map<long long, int>::iterator c = m.begin(); c != m.end();)
{
printf("%lld^%d", c->first, c->second);
if ((++c) != m.end())
printf(" * ");
}
printf("\n");
}
}
return 0;
}
数学--数论--随机算法--Pollard Rho 大数分解算法(纯模板带输出)的更多相关文章
- 数学--数论--随机算法--Pollard Rho 大数分解算法 (带输出版本)
RhoPollard Rho是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:MillerRabinMillerRabin素数测试. 操作流程 首先,我们先用MillerRabinMille ...
- Pollard Rho因子分解算法
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Po ...
- 模板 - 数学 - 数论 - Miller-Rabin算法
使用Fermat小定理(Fermat's little theorem)的原理进行测试,不满足 \(2^{n-1}\;\mod\;n\;=\;1\) 的n一定不是质数:如果满足的话则多半是质数,满足上 ...
- 数学--数论---P4718 Pollard-Rho算法 大数分解
P4718 [模板]Pollard-Rho算法 题目描述 MillerRabin算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的.Pollar ...
- 初学Pollard Rho算法
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...
- Pollard Rho算法浅谈
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...
- Pollard Rho 算法简介
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...
随机推荐
- (js描述的)数据结构[树结构之红黑树](13)
1.二叉送搜索树的缺点: 2.红黑树难度: 3.红黑树五大规则: 4.红黑树五大规则的作用: 5.红黑树二大变换: 1)变色 2)旋转 6.红黑树的插入五种变换情况: 先声明--------插入的数据 ...
- linux升级python2.7到3.7.0
1.下载python3.7.0压缩包在 wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz 2.解压缩 tar -zxvf Py ...
- Python 1基础语法二(标识符、关键字、变量和字符串)
一.标识符 标识符就是程序员自己命名的变量名.名字需要有见名知义的效果,不要随意起名 :比如 a=1 a是个变量,a这个变量名属于标识符 1 company = '小米 2 employeeNum = ...
- IntelliJ IDEA 在方法大括号中{}点击回车多出一个},如何取消
在 File - settings - Editor - General- Smart Keys - Enter 去掉 Insert pair '}' 的对勾就可以了
- 004-流程控制-C语言笔记
004-流程控制-C语言笔记 学习目标 1.[掌握]关系运算符和关系表达式 2.[掌握]逻辑运算符和逻辑表达式 3.[掌握]运算符的优先级和结合性 4.[掌握]if-else if-else结构的使用 ...
- 【three.js 第一课】创建场景,显示几何体
<!DOCTYPE html> <html> <head> <title>demo1</title> </head> <s ...
- 一站式WebAPI与认证授权服务
保护WEBAPI有哪些方法? 微软官方文档推荐了好几个: Azure Active Directory Azure Active Directory B2C (Azure AD B2C)] Ident ...
- layui.laytpl 模板引擎用法
目录 layui下载地址: 最终效果: 模板引擎文档 手册地址: 以下是代码思路: layui下载地址: https://www.layui.com/ 最终效果: 模板引擎文档 手册地址: https ...
- 反向icmp_shell
前言 很老的一个技术了,学习下. ICMP协议工作方式简介 Internet控制报文协议(ICMP)是Internet协议族中一个.它被用于包括路由器在内的网络设备中,用来发送错误报文和操作信息,表示 ...
- [JS] 自己弄得个倒计时
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...