2020-03-01 22:59:59

问题描述:

给你一个 m x n 的网格图 grid 。 grid 中每个格子都有一个数字,对应着从该格子出发下一步走的方向。 grid[i][j] 中的数字可能为以下几种情况:

  • 1 ,下一步往右走,也就是你会从 grid[i][j] 走到 grid[i][j + 1]
  • 2 ,下一步往左走,也就是你会从 grid[i][j] 走到 grid[i][j - 1]
  • 3 ,下一步往下走,也就是你会从 grid[i][j] 走到 grid[i + 1][j]
  • 4 ,下一步往上走,也就是你会从 grid[i][j] 走到 grid[i - 1][j]

注意网格图中可能会有 无效数字 ,因为它们可能指向 grid 以外的区域。

一开始,你会从最左上角的格子 (0,0) 出发。我们定义一条 有效路径 为从格子 (0,0) 出发,每一步都顺着数字对应方向走,最终在最右下角的格子 (m - 1, n - 1) 结束的路径。有效路径 不需要是最短路径 。

你可以花费 cost = 1 的代价修改一个格子中的数字,但每个格子中的数字 只能修改一次 。

请你返回让网格图至少有一条有效路径的最小代价。

示例 1:

输入:grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
输出:3
解释:你将从点 (0, 0) 出发。
到达 (3, 3) 的路径为: (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) 花费代价 cost = 1 使方向向下 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) 花费代价 cost = 1 使方向向下 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) 花费代价 cost = 1 使方向向下 --> (3, 3)
总花费为 cost = 3.

示例 2:

输入:grid = [[1,1,3],[3,2,2],[1,1,4]]
输出:0
解释:不修改任何数字你就可以从 (0, 0) 到达 (2, 2) 。

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100

问题求解:

最重要的是reduce,如何将问题转成已知的知识非常重要。

本题中看似是需要求改变方向个数最少,其实是在最短路径。

如果我们将通过标示到达w = 0,那么通过修改到达的w = 1。

解法一:dijkstra

朴素的dijkstra算法的时间复杂度为O(V ^ 2);如果使用优先队列和邻接表可以将时间复杂度优化为O((E + V)logV)。

时间复杂度:O(mnlog(mn))

    int[][] dirs = new int[][]{{0, 1}, {0, -1}, {1, 0}, {-1, 0}};

    public int minCost(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[] dist = new int[m * n];
Arrays.fill(dist, (int)(1e9));
PriorityQueue<int[]> pq = new PriorityQueue<>((int[] o1, int[] o2) -> o1[1] - o2[1]);
int[] used = new int[m * n];
pq.add(new int[]{0, 0});
while (!pq.isEmpty()) {
int[] node = pq.poll();
int from = node[0];
int d = node[1];
if (used[from] == 1) continue;
used[from] = 1;
dist[from] = d;
int x = from / n;
int y = from % n;
for (int i = 1; i <= 4; i++) {
int nx = x + dirs[i - 1][0];
int ny = y + dirs[i - 1][1];
if (nx >= m || nx < 0 || ny >= n || ny < 0) continue;
int w = grid[x][y] == i ? 0 : 1;
int to = nx * n + ny;
if (dist[to] > dist[from] + w) {
dist[to] = dist[from] + w;
pq.add(new int[]{to, dist[to]});
}
}
}
return dist[m * n - 1];
}

解法二:0-1BFS

本题有个特殊的地方就是边权重只为0 / 1,在这样的图上求解最短路径的最优解是使用0-1 BFS。

0-1BFS使用了BFS的性质,当前层和下一层的节点的距离最大不超过1,因此当我们碰到w = 0的节点的时候可将其加入队首,如果碰到w = 1的节点的时候将其加入队尾,这样就巧妙的进行了排序工作,因此时间复杂度要更优。

时间复杂度:O(mn)

    int[][] dirs = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
public int minCost(int[][] grid) {
int res = 0;
int m = grid.length;
int n = grid[0].length;
if (m == 1 && n == 1) return res;
Deque<int[]> q = new LinkedList<>();
Set<Integer> used = new HashSet<>();
q.add(new int[]{0, 0});
while (!q.isEmpty()) {
int[] curr = q.pollFirst();
if (used.contains(curr[0])) continue;
used.add(curr[0]);
int x = curr[0] / n;
int y = curr[0] % n;
int cost = curr[1];
if (x == m - 1 && y == n - 1) return cost;
for (int i = 1; i <= 4; i++) {
int nx = x + dirs[i - 1][0];
int ny = y + dirs[i - 1][1];
if (nx < 0 || nx >= m || ny < 0 || ny >= n || used.contains(nx * n + ny)) continue;
if (grid[x][y] == i)
q.addFirst(new int[]{nx * n + ny, cost});
else
q.addLast(new int[]{nx * n + ny, cost + 1});
}
}
return -1;
}

  

图-最短路-dijkstra-0/1BFS-1368. 使网格图至少有一条有效路径的最小代价的更多相关文章

  1. BZOJ 1579: [Usaco2009 Feb]Revamping Trails 道路升级 分层图最短路 + Dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  2. Codeforces.786B.Legacy(线段树优化建图 最短路Dijkstra)

    题目链接 \(Description\) 有\(n\)个点.你有\(Q\)种项目可以选择(边都是有向边,每次给定\(t,u,v/lr,w\)): t==1,建一条\(u\to v\)的边,花费\(w\ ...

  3. [JLOI2011]飞行路线 分层图最短路

    题目描述: Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在nn个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并且航线有一 ...

  4. Bzoj 2834: 回家的路 dijkstra,堆优化,分层图,最短路

    2834: 回家的路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 62  Solved: 38[Submit][Status][Discuss] D ...

  5. BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路

    BZOJ_2662_[BeiJing wc2012]冻结_分层图最短路 Description “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切, ...

  6. BZOJ2662[BeiJing wc2012]冻结——分层图最短路

    题目描述 “我要成为魔法少女!”     “那么,以灵魂为代价,你希望得到什么?” “我要将有关魔法和奇迹的一切,封印于卡片之中„„”     在这个愿望被实现以后的世界里,人们享受着魔法卡片(Spe ...

  7. 分层图最短路【bzoj2662】[BeiJing wc2012]冻结

    分层图最短路[bzoj2662][BeiJing wc2012]冻结 Description "我要成为魔法少女!" "那么,以灵魂为代价,你希望得到什么?" ...

  8. P2939 [USACO09FEB]改造路[分层图最短路]

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  9. poj3635Full Tank?[分层图最短路]

    Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7248   Accepted: 2338 Descri ...

随机推荐

  1. paxos算法学习总结

    核心思想 分布式系统架构下如何让整体尽快达成一致观点,也就是多个不同观点收敛到一个观点的过程. 难点 可能会发生少数节点故障,但绝不是大面积故障,不然系统也没法正常工作. 由于存在单点故障,因此不可能 ...

  2. 初识Machine Learning

    What is Machine Learning 定义 Arthur Samuel:Field of study that gives computers the ability to learn w ...

  3. SolrJ 的运用

    SolrJ 是操作 Solr 的 Java 客户端,它提供了增加.修改.删除.查询 Solr 索引的 Java 接口.SolrJ 针对 Solr 提供了 REST 的 Http 接口进行了封装, So ...

  4. webpack环境配置2

    1.webpack安装 Step 1: 首先安装Node.js, 在1中已经详细介绍了. Step2: 在Git或者cmd中输入下面这段代码, 通过全局先将webpack指令安装进电脑中npm ins ...

  5. 探究Java中的引用

    探究Java中的四种引用 从JDK1.2版本开始,Java把对象的引用分为四种级别,从而使程序能更加灵活的控制对象的生命周期.这四种级别由高到低依次为:强引用.软引用.弱引用和虚引用.本篇就来详细探究 ...

  6. 难住了同事:Java 方法调用到底是传值还是传引用

    Java 方法调用中的参数是值传递还是引用传递呢?相信每个做开发的同学都碰到过传这个问题,不光是做 Java 的同学,用 C#.Python 开发的同学同样肯定遇到过这个问题,而且很有可能不止一次. ...

  7. Arthas 实战,助你解决同名类依赖冲突问题

    上篇文章中,小黑哥分析 Maven 依赖冲突分为两类: 项目同一依赖应用,存在多版本,每个版本同一个类,可能存在差异. 项目不同依赖应用,存在包名,类名完全一样的类. 第二种情况,往往是这个场景,本地 ...

  8. VueX状态管理器 的应用

    VueX状态管理器 cnpm i vuex axios -S 1 创建Vuex 仓库 import Vue from 'vue' import Vuex from 'vuex' vue.use(Vue ...

  9. JavaScript的函数(一)

    ,1,在javascript中,函数即对象.函数里面的参数可以是个函数,例如: data.sort(function(a,b){return a-b;}) 函数的返回值,return语句导致函数停止执 ...

  10. Android开发进阶 -- 通用适配器 CommonAdapter

    在Android开发中,我们经常会用到ListView 这个组件,为了将ListView 的内容展示出来,我们会去实现一个Adapter来适配,将Layout中的布局以列表的形式展现到组件中.     ...