k-折交叉验证(k-fold crossValidation):
在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据集对算法效果进行测试,将数据集A随机分为k个包,每次将其中一个包作为测试集,剩下k-1个包作为训练集进行训练。
在matlab中,可以利用:
indices=crossvalind('Kfold',x,k);
来实现随机分包的操作,其中x为一个N维列向量(N为数据集A的元素个数,与x具体内容无关,只需要能够表示数据集的规模),k为要分成的包的总个数,输出的结果indices是一个N维列向量,每个元素对应的值为该单元所属的包的编号(即该列向量中元素是1~k的整随机数),利用这个向量即可通过循环控制来对数据集进行划分。例:
[M,N]=size(data);//数据集为一个M*N的矩阵,其中每一行代表一个样本
    indices=crossvalind('Kfold',data(1:M,N),10);//进行随机分包
    for k=1:10//交叉验证k=10,10个包轮流作为测试集
        test = (indices == k); //获得test集元素在数据集中对应的单元编号
        train = ~test;//train集元素的编号为非test元素的编号
        train_data=data(train,:);//从数据集中划分出train样本的数据
 train_target=target(:,train);//获得样本集的测试目标,在本例中是实际分类情况
        test_data=data(test,:);//test样本集
 test_target=target(:,test);
[HammingLoss(1,k),RankingLoss(1,k),OneError(1,k),Coverage(1,k),Average_Precision(1,k),Outputs,Pre_Labels.MLKNN]=MLKNN_algorithm(train_data,train_target,test_data,test_target);//要验证的算法
 end
//上述结果为输出算法MLKNN的几个验证指标及最后一轮验证的输出和结果矩阵,每个指标都是一个k元素的行向量

K折-交叉验证的更多相关文章

  1. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  2. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  3. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  4. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...

  5. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  6. k折交叉验证

    原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...

  7. 偏差(bias)和方差(variance)及其与K折交叉验证的关系

    先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...

  8. (数据挖掘-入门-6)十折交叉验证和K近邻

    主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...

  9. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

随机推荐

  1. React Native Build Apk

    1 React Native安卓项目打包APK 1.1 产生签名的key 先通过keytool生成key 1 keytool -genkey -v -keystore demo-release-key ...

  2. jQuery样式及html属性操作

    样式及html属性操作1,行内样式 css(); a:获取样式 元素.css(样式名称); b:设置单个样式 元素.css("样式名称":"样式值"); c:设 ...

  3. 一步到位datatabls中文化

    #一步到位datatabls中文化 加入以下代码 $(document).ready(function () { $('#declarationList').DataTable({ destroy:t ...

  4. EOS2.0环境搭建-centos7

    需要安装启动的有三个组件 nodes,keosd,cleos,看看三者的关系 nodeos:核心程序,用于启动eos节点服务,在后台运行,可以配置不同 插件.该进程负责账户管理.区块生成.共识建立,并 ...

  5. 1,Java知识储备

    1,关于 . java文件 规定:第一行为 package name; 表示该.java文件属于哪一个包. 一个.java文件中可以有多个类,但是只能有一个public类,并且这个public类必须与 ...

  6. C# 关于位运算的学习笔记

    一.理解什么是位运算 程序中的所有内容在计算机内存中都是以二进制的形式储存的(即:0或1),简单来说位运算就是直接对在内存中的二进制数的每位进行运算操作. 二.学习前先了解一下有哪些运算,运算符都怎么 ...

  7. CentOS7.5源码编译安装mysql5.7.29

    #查看系统版本 [root@ctos3 ~]# cat /etc/redhat-release CentOS Linux release (Core) #下载源码包,需要注意的是mysql5.7 编译 ...

  8. TCP/IP基础总结性学习(6)

    HTTP 首部 一. HTTP 报文首部 1.HTTP 报文的结构: 2.HTTP 请求报文 图示: 举例子: 3.HTTP 响应报文: 下面的示例是访问 http://hackr.jp 时,请求报文 ...

  9. JZOJ 5258. 友好数对 (Standard IO)

    5258. 友好数对 (Standard IO) Time Limits: 1000 ms Memory Limits: 524288 KB Detailed Limits Description I ...

  10. Windows下安装虚拟机

    一.准备工作 1.下载centos7操作系统 阿里巴巴站点: http://mirrors.aliyun.com/centos/7/isos/x86_64/ 2.下载VMware虚假机 可以直接通过3 ...