[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane
Exercises 3.2
21.
(a). For $\omega = sinz$, what is the image of the semi-infinite strip
$S_1 = \{x+iy|-\pi<x<\pi,y>0\}$
(b). what is the image of the smaller semi-infinite strip
$S_2 = \{x+iy|-\frac{\pi}{2}<x<\frac{\pi}{2},y>0\}$
Solutions:
First of all, let's assume $z = x + iy$, then expand the $\omega$,
$sin(x+iy)=sinx\cdot coshy+icosx\cdot sinhy$
In addition, observe closely, we will find that it's really hard to draw the $w-plane$, whatever the method we use, including "Freeze" Variable and expressing the formula in terms of $\displaystyle e^z$. But now, we can use the concept linear independence on functions to solve the problems!
Namely, if we assume $f=sinx\cdot coshy$,$g=cosx\cdot sinhy$, the value of $g$ doesn't affect that of $f$! OR, the other way round.
Proof: let's assume $c_1,c_2 \in C$, and $c_1 f+c_2 g = 0$,then
$c_1 tanx \cdot tanhy+c_2=0$
if, $c_1 \ne 0$, we have $\displaystyle tanx\cdot tanhy + \frac{c_2}{c_1}=0$. Since $x, y$ vary freely in the interval, it's quite obvious that it's impossible for $c_1$ to be $0$.
Thus, $c_1 = 0$, and $c_2 = 0$.
So, to draw the picture of $\omega$, we just need to find the range of $f$ and $g$.
The remaining parts are left for the readers.
[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane的更多相关文章
- 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl
因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Compl ...
- A brief introduction to complex analysis
\(\underline{Def:}\)A func \(U(\subset \mathbb{C}) \stackrel{f}\longrightarrow \mathbb{C}\)is (compl ...
- java 实现傅立叶变换算法 及复数的运算
最近项目需求,需要把python中的算法移植到java上,其中有一部分需要用到复数的运算和傅立叶变换算法,废话不多说 如下: package qrs; /** * 复数的运算 * */ public ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- How to do Mathematics
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents
I find it may cost me so much time in doing such solutions to exercises and problems....I am sorry t ...
- Foundations of Game Engine Development Volume 1 Mathematics (Eric Lengyel 著)
http://www.foundationsofgameenginedev.com/ Chapter1 Vectors and Matrices (已看) Chapter2 Transforms (已 ...
- Machine Learning Trick of the Day (1): Replica Trick
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machi ...
随机推荐
- php 实现店铺装修8
/** * @title 店铺装修--根据分类获取商品列表 * @param source 是 int 来源(1--h5.2--app) * @param type 是 string 店铺类型--首页 ...
- tcp/ip协议学习笔记一
一. 简述 以前在学校学习计算机网络的时候学习多是网络7层模型OSI,了解了一些基本的计算机网络概念和协议通信格式,但是一直没弄明白其中的原理,包括各层之间的关系,应用,还有一些常见的令牌环网到底是什 ...
- 小程序父子组件onLoad和Created之间的问题
今天开发日历插件时,遇到了以下问题: 因为需要在父组件的onLoad里加载接口从而得到每一天的房间数据,然后将数据存进小程序缓存. 接着在子组件里 获取小程序缓存来得到父组件传来的房间数据,在子组件里 ...
- mybatis insert后返回主键ID
需求: mybatis 在添加记录时需要获取到记录主键id id=0 无法获取主键id的值 在插入方法中添加如下属性和相应的值 <insert useGeneratedKeys="t ...
- Vue中 v-for 绑定key和不绑定key的区别
首先,它们区别主要在于 虚拟DOM的复用,绑定key可以更好的复用,下面来详细讲一下 假如我们有一个数组 arr = [1,2,3,4],我们要在2后面插入一个值9: 如果绑定了key值,那么会是这样 ...
- Adapter之spinner
前言: 在写代码当中有时候会用到下拉列表,下面我们讲一下spinner 正文: 因为比较简单,和之前的listView很像,所以直接上代码 <Spinner android:layout_wid ...
- pytorch & numpy广播法则
广播法则 所有数组向维度最高的数组看齐,若维度不足则在最前面的维度用1补齐 扩展维度后,所有数组在某一维度相同或者长度为1,否则不能计算 当可以计算时,将长度为1的维度扩展为另一数组相应维度的长度 a ...
- HiBench成长笔记——(5) HiBench-Spark-SQL-Scan源码分析
run.sh #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributo ...
- numpy中的CSV文件
As we all know,we use numpy to do some data explore.CSV has a good point to get a lot data. so how c ...
- C++连接sqlite数据库的增删查改操作
这个代码是接着上次说的,要用VS2013操作数据库,首先要配置好环境,创建好数据库表等. 不明白的翻我前面2篇看看~~~ 关于前面的用到的goto 语句,这个我也是参考其他博主写的,现在我注释掉了,毕 ...