[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane
Exercises 3.2
21.
(a). For $\omega = sinz$, what is the image of the semi-infinite strip
$S_1 = \{x+iy|-\pi<x<\pi,y>0\}$
(b). what is the image of the smaller semi-infinite strip
$S_2 = \{x+iy|-\frac{\pi}{2}<x<\frac{\pi}{2},y>0\}$
Solutions:
First of all, let's assume $z = x + iy$, then expand the $\omega$,
$sin(x+iy)=sinx\cdot coshy+icosx\cdot sinhy$
In addition, observe closely, we will find that it's really hard to draw the $w-plane$, whatever the method we use, including "Freeze" Variable and expressing the formula in terms of $\displaystyle e^z$. But now, we can use the concept linear independence on functions to solve the problems!
Namely, if we assume $f=sinx\cdot coshy$,$g=cosx\cdot sinhy$, the value of $g$ doesn't affect that of $f$! OR, the other way round.
Proof: let's assume $c_1,c_2 \in C$, and $c_1 f+c_2 g = 0$,then
$c_1 tanx \cdot tanhy+c_2=0$
if, $c_1 \ne 0$, we have $\displaystyle tanx\cdot tanhy + \frac{c_2}{c_1}=0$. Since $x, y$ vary freely in the interval, it's quite obvious that it's impossible for $c_1$ to be $0$.
Thus, $c_1 = 0$, and $c_2 = 0$.
So, to draw the picture of $\omega$, we just need to find the range of $f$ and $g$.
The remaining parts are left for the readers.
[Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane的更多相关文章
- 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Complex(int i,int j) 显示复数的方法:showComp()将其显示为如: 5+8i或5-8i 的形式。 求两个复数的和的方法:(参数是两个复数类对象,返回值是复数类对象)public Complex addComp(Compl
因标题框有限,题目未显示完整,以下再放一份: 定义一个复数(z=x+iy)类Complex,包含: 两个属性:实部x和虚部y 默认构造函数 Complex(),设置x=0,y=0 构造函数:Compl ...
- A brief introduction to complex analysis
\(\underline{Def:}\)A func \(U(\subset \mathbb{C}) \stackrel{f}\longrightarrow \mathbb{C}\)is (compl ...
- java 实现傅立叶变换算法 及复数的运算
最近项目需求,需要把python中的算法移植到java上,其中有一部分需要用到复数的运算和傅立叶变换算法,废话不多说 如下: package qrs; /** * 复数的运算 * */ public ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- How to do Mathematics
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:匿名用户链接:http://www.zhihu.com/question/30087053/answer/47815698来源 ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents
I find it may cost me so much time in doing such solutions to exercises and problems....I am sorry t ...
- Foundations of Game Engine Development Volume 1 Mathematics (Eric Lengyel 著)
http://www.foundationsofgameenginedev.com/ Chapter1 Vectors and Matrices (已看) Chapter2 Transforms (已 ...
- Machine Learning Trick of the Day (1): Replica Trick
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machi ...
随机推荐
- Java自学-集合框架 HashSet、LinkedHashSet、TreeSet之间的区别
HashSet. LinkedHashSet.TreeSet之间的区别 步骤 1 : HashSet LinkedHashSet TreeSet HashSet: 无序 LinkedHashSet: ...
- java 十大经典排序算法
十大排序算法可以说是每个程序员都必须得掌握的了,花了一天的时间把代码实现且整理了一下,为了方便大家学习,我把它整理成一篇文章,每种算法会有简单的算法思想描述,为了方便大家理解,我还找来了动图演示:这还 ...
- 开发自己的 chart【转】
Kubernetes 给我们提供了大量官方 chart,不过要部署微服务应用,还是需要开发自己的 chart,下面就来实践这个主题. 创建 chart 执行 helm create mychart 的 ...
- HiBench成长笔记——(6) HiBench测试结果分析
Scan Join Aggregation Scan Join Aggregation Scan Join Aggregation Scan Join Aggregation Scan Join Ag ...
- web.xml文件中context-param的作用
转 <context-param>的作用:web.xml的配置中<context-param>配置作用1. 启动一个WEB项目的时候,容器(如:Tomcat)会去读它的配置文件 ...
- Linux-Power-management
1. 低级接口1.1 内核(swsusp)软件挂起1.1.1 睡眠状态的2个控制文件1.1.2 查看当前系统的睡眠控制文件内容1.1.3 状态表(表1)1.1.4 状态的使用1.2 uswsusp用户 ...
- 用BusyBox制作Linux最小系统
1.下载busybox-1.30.1 地址:https://busybox.net/downloads/busybox-1.30.1.tar.bz2 2.解压:tar xvf busybox-1.30 ...
- 用JS写一个网站树形菜单
先上效果图: 主体内容就是侧边展示的一二三级菜单,树形结构的. 前端页面布局内容,页面内容简单用ul li 来完成所有的罗列项.用先后顺序来区分一级二级三级: <body> <b&g ...
- Intellij IDEA中配置TFS
TFS是微软推出的一款研发过程管理利器,C#阵营的VS里做了默认集成,但是对于Java阵营的Intellij IDEA,需要安装插件并进行相应配置才能使用: 1.打开配置 2.搜索并安装插件 3.配置 ...
- lamp-module
要求: (1) 三者分离于两台主机: (2) 一个虚拟主机用于提供phpMyAdmin:另一个虚拟主机用于提供wordpress: (3) xcache (4) 为phpMyAdmin提供htt ...