题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注

现在有两个块巧克力一块大小是   的,另外一块大小是   的。

现在要把两块巧克力变成面积一样大小,可以使用下列两种方法:

·        可以沿横向或纵向的网格线分成两等分,然后吃掉其中的一份。

·        可以沿横向或纵向的网格线分成2/3,1/3的两份,吃掉小的那一份。

因此使用第一种方法会留一半巧克力,用第二种方法会留下2/3巧克力。

两种方法并不总是可行的,有些时候两种方法都不能再用了。比如巧克力大小是16 × 23的时候,可以使用第一种方法,但是不能使用第二种方法。当大小是20 × 18的时候,可以使用第一种方法或者第二种方法。如果大小是5 × 7的时候,两种方法都不能使用。

问最少要操作几次才能使得两块巧克力的面积是一样的。

Input
单组测试数据。
第一行有两个整数a1, b1 (1 ≤ a1, b1 ≤ 10^9),表示第一块巧克力的大小。
第二行有两个整数a2, b2 (1 ≤ a2, b2 ≤ 10^9),表示第二块巧克力的大小。
Output
对于每一组数据输出占一行,输出一个整数表示最小步数,如果无法达到输出-1。
Input示例
2 6
2 3
Output示例
1

之前有做过codeforces上面类似的题,也是素数分解。这个题目就是把矩形的两条边一直除以3 一直除以2之后最后结果乘积是否相等,相等就可以到达,否则就不行。

之后就是看相差了多少个3 多少个2,相差了多少3最后的步数一定是加上多少3,而又由于有多少3必然会带来多少2,所以要把这部分2的数量扣除,扣除之后,再计算相差了多少2。两部分相加即是结果。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; long long result;
int cnt2[5];
int cnt3[5]; int main()
{
long long x1, y1, x2, y2;
cin >> x1 >> x2;
cin >> y1 >> y2;
long long t1 = x1, t2 = x2, k1 = y1, k2 = y2;
memset(cnt2, 0, sizeof(cnt2));
memset(cnt3, 0, sizeof(cnt3));
while (t1 % 2 == 0)
{
t1 /= 2;
cnt2[0]++;
}
while (t1 % 3 == 0)
{
t1 /= 3;
cnt3[0]++;
}
while (t2 % 2 == 0)
{
t2 /= 2;
cnt2[1]++;
}
while (t2 % 3 == 0)
{
t2 /= 3;
cnt3[1]++;
}
while (k1 % 2 == 0)
{
k1 /= 2;
cnt2[2]++;
}
while (k1 % 3 == 0)
{
k1 /= 3;
cnt3[2]++;
}
while (k2 % 2 == 0)
{
k2 /= 2;
cnt2[3]++;
}
while (k2 % 3 == 0)
{
k2 /= 3;
cnt3[3]++;
}
//分别记录下四条边中素因子2,3的个数
if (t1 * t2 != k1 * k2)//剩余的素因子的乘积不等
cout << -1 << endl;
else
{
int ans = 0;
int x3 = cnt3[0] + cnt3[1];//第一个矩形中3的个数
int y3 = cnt3[2] + cnt3[3];//第二个矩形中3的个数
int x4 = cnt2[0] + cnt2[1];//第一个矩形中2的个数
int y4 = cnt2[2] + cnt2[3];//第二个矩形中2的个数
int xd3 = 0, yd3 = 0, xd4 = 0, yd4 = 0;
if (x3 > y3)//如果第一个矩形中3的个数大于第二个3的个数
{
xd3 = x3 - y3;
x4 += xd3;//每去掉一个素因子3就对应需要增加一个素因子2
ans += xd3;
}
else if (x3 < y3)
{
yd3 = y3 - x3;
y4 += yd3;
ans += yd3;
}
if (x4 > y4)
{
xd4 = x4 - y4;
ans += xd4;
}
else if (x4 < y4)
{
yd4 = y4 - x4;
ans += yd4;
}
cout << ans << endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

51nod 1429:巧克力的更多相关文章

  1. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  2. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  3. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  4. 51Nod 1278 相离的圆

    51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...

  5. hdu 1429

    http://acm.hdu.edu.cn/showproblem.php?pid=1429 一个广搜的简单题吧,不过有意思的事这个题目用到了位运算,还有就是很恶心的MLE #include < ...

  6. 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...

  7. 【51Nod 1622】【算法马拉松 19C】集合对

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...

  8. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

  9. 【51Nod 1674】【算法马拉松 19A】区间的价值 V2

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...

随机推荐

  1. SIM800L AT command

    /*********************************************************** AT+ICF==<format> ,<parity> ...

  2. struts2--验证器

    1.输入验证: --struts2提供了一些基于Xwork Validation Framework的内建验证程序,使用这些验证程序不需要变编程,只要在一个XML文件里进行声明,声明的内容如下: &g ...

  3. 「SP2713」GSS4 - Can you answer these queries IV

    传送门 Luogu 解题思路 区间开方以及区间求和. 考虑用线段树来做. 开方操作看似没有任何结合律可言,但这题有另外一个性质: 一个数的初始值不超过 \(10^{18}\) ,而这个数被开方6次左右 ...

  4. 079、Java数组之数组的静态初始化

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  5. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:"text-muted" 类的文本样式

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  6. 【LeetCode】113. 路径总和 II

    题目 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum = 22, 5 / \ ...

  7. ZCGL项目解析——概述

    模块清单 微服务模块:routeservice.eurekaservice.configservice 数据服务模块:fdfsservice.hbaseservice 工具服务模块:common 系统 ...

  8. [笔记]ul>li>a做分布时, 让其居中显示效果

    结构: <div id="page"> <ul> <li><a href="#">首页</a>< ...

  9. 008.CI4框架CodeIgniter, Controller控制器传输参数到View视图

    01. 在CI4中输出VIEW视图,并且传入参数,代码如下: <?php namespace App\Controllers; class Home extends BaseController ...

  10. 1.HDFS分布式文件系统

    HDFS概述及设计目标 如果让我们自己设计一个分布式文件存储系统,怎么做? HDFS设计目标 非常巨大的分布式文件系统 运行在普通廉价的硬件上 易扩展,为用户提供性能不错的文件存储系统 HDFS架构 ...