有赞透明多级缓存解决方案(TMC)设计思路
引子
TMC 是什么
TMC,即“透明多级缓存(Transparent Multilevel Cache)”,是有赞 PaaS 团队给公司内应用提供的整体缓存解决方案。
TMC 在通用“分布式缓存解决方案(如 CodisProxy + Redis,如有赞自研分布式缓存系统 zanKV)”基础上,增加了以下功能:
应用层热点探测
应用层本地缓存
应用层缓存命中统计
以帮助应用层解决缓存使用过程中出现的热点访问问题。
为什么要做 TMC
使用有赞服务的电商商家数量和类型很多,商家会不定期做一些“商品秒杀”、“商品推广”活动,导致“营销活动”、“商品详情”、“交易下单”等链路应用出现缓存热点访问的情况:
活动时间、活动类型、活动商品之类的信息不可预期,导致 缓存热点访问 情况不可提前预知;
缓存热点访问出现期间,应用层少数热点访问 key 产生大量缓存访问请求:冲击分布式缓存系统,大量占据内网带宽,最终影响应用层系统稳定性;
为了应对以上问题,需要一个能够 自动发现热点 并 将热点缓存访问请求前置在应用层本地缓存 的解决方案,这就是 TMC 产生的原因。
多级缓存解决方案的痛点
基于上述描述,我们总结了下列多级缓存解决方案需要解决的需求痛点:
热点探测:如何快速且准确的发现热点访问 key ?
数据一致性:前置在应用层的本地缓存,如何保障与分布式缓存系统的数据一致性?
效果验证:如何让应用层查看本地缓存命中率、热点 key 等数据,验证多级缓存效果?
透明接入:整体解决方案如何减少对应用系统的入侵,做到快速平滑接入?
TMC 聚焦上述痛点,设计并实现了整体解决方案。以支持“热点探测”和“本地缓存”,减少热点访问时对下游分布式缓存服务的冲击,避免影响应用服务的性能及稳定性。
TMC 整体架构
TMC 整体架构如上图,共分为三层:
存储层:提供基础的 kv 数据存储能力,针对不同的业务场景选用不同的存储服务(codis/zankv/aerospike);
代理层:为应用层提供统一的缓存使用入口及通信协议,承担分布式数据水平切分后的路由功能转发工作;
应用层:提供统一客户端给应用服务使用,内置“热点探测”、“本地缓存”等功能,对业务透明;
本篇聚焦在应用层客户端的“热点探测”、“本地缓存”功能。
TMC 本地缓存
如何透明
TMC 是如何减少对业务应用系统的入侵,做到透明接入的?
对于公司 Java 应用服务,在缓存客户端使用方式上分为两类:
- 基于
spring.data.redis
包,使用RedisTemplate
编写业务代码;
基于youzan.framework.redis
包,使用RedisClient
编写业务代码;
不论使用以上那种方式,最终通过JedisPool
创建的 Jedis
对象与缓存服务端代理层做请求交互。
TMC 对原生 jedis 包的JedisPool
和Jedis
类做了改造,在JedisPool
初始化过程中集成 TMC“热点发现”+“本地缓存”功能Hermes-SDK
包的初始化逻辑,使 Jedis客户端与缓存服务端代理层交互时先与Hermes-SDK
交互,从而完成 “热点探测”+“本地缓存”功能的透明接入。
对于 Java 应用服务,只需使用特定版本的 jedis-jar 包,无需修改代码,即可接入 TMC 使用“热点发现”+“本地缓存”功能,做到了对应用系统的最小入侵。
整体结构
模块划分
TMC 本地缓存整体结构分为如下模块:
Jedis-Client:Java 应用与缓存服务端交互的直接入口,接口定义与原生 Jedis-Client 无异;
Hermes-SDK:自研“热点发现+本地缓存”功能的 SDK 封装,Jedis-Client 通过与它交互来集成相应能力;
Hermes 服务端集群:接收 Hermes-SDK 上报的缓存访问数据,进行热点探测,将热点 key 推送给 Hermes-SDK 做本地缓存;
缓存集群:由代理层和存储层组成,为应用客户端提供统一的分布式缓存服务入口;
基础组件:etcd 集群、Apollo 配置中心,为 TMC 提供“集群推送”和“统一配置”能力;
基本流程
key 值获取
- Java 应用调用
Jedis-Client
接口获取key
的缓存值时,Jedis-Client
会询问Hermes-SDK
该key
当前是否是 热点key; - 对于
热点key
,直接从Hermes-SDK
的热点模块
获取热点key
在本地缓存的value
值,不去访问 缓存集群 ,从而将访问请求前置在应用层; - 对于非 热点key ,Hermes-SDK 会通过 Callable回调 Jedis-Client 的原生接口,从 缓存集群 拿到 value 值;
- 对于 Jedis-Client 的每次 key 值访问请求,Hermes-SDK 都会通过其 通信模块 将 key 访问事件 异步上报给 Hermes 服务端集群 ,以便其根据上报数据进行“热点探测”;
- Java 应用调用
key 值过期
- ava 应用调用 Jedis-Client 的 set() del() expire()接口时会导致对应 key 值失效,Jedis-Client 会同步调用 Hermes-SDK 的 invalid()方法告知其“key 值失效”事件;
- 对于 热点 key ,Hermes-SDK 的 热点模块 会先将 key 在本地缓存的 value 值失效,以达到本地数据强一致。同时 通信模块 会异步将“key 值失效”事件通过 etcd 集群 推送给 Java 应用集群中其他 Hermes-SDK 节点;
- 其他 Hermes-SDK 节点的 通信模块 收到 “key 值失效”事件后,会调用 热点模块 将 key 在本地缓存的 value 值失效,以达到集群数据最终一致;
热点发现
- Hermes 服务端集群 不断收集 Hermes-SDK上报的 key 访问事件,对不同业务应用集群的缓存访问数据进行周期性(3s 一次)分析计算,以探测业务应用集群中的热点 key列表;
- 对于探测到的热点 key列表,Hermes 服务端集群 将其通过 etcd 集群 推送给不同业务应用集群的 Hermes-SDK 通信模块,通知其对热点 key列表进行本地缓存;
配置读取
- Hermes-SDK 在启动及运行过程中,会从 Apollo 配置中心 读取其关心的配置信息(如:启动关闭配置、黑白名单配置、etcd 地址…);
- Hermes 服务端集群 在启动及运行过程中,会从 Apollo 配置中心 读取其关心的配置信息(如:业务应用列表、热点阈值配置、etcd 地址…);
稳定性
TMC 本地缓存稳定性表现在以下方面:
数据上报异步化:Hermes-SDK 使用 rsyslog技术对“key 访问事件”进行异步化上报,不会阻塞业务;
通信模块线程隔离:Hermes-SDK 的 通信模块 使用独立线程池+有界队列,保证事件上报\u0026amp;监听的 I/O 操作与业务执行线程隔离,即使出现非预期性异常也不会影响基本业务功能;
缓存管控:Hermes-SDK 的 热点模块 对本地缓存大小上限进行了管控,使其占用内存不超过64MB(LRU),杜绝 JVM 堆内存溢出的可能;
一致性
TMC 本地缓存一致性表现在以下方面:
Hermes-SDK 的 热点模块 仅缓存 热点 key 数据,绝大多数非热点 key数据由 缓存集群 存储;
热点 key 变更导致 value 失效时,Hermes-SDK 同步失效本地缓存,保证 本地强一致;
热点 key 变更导致 value 失效时,Hermes-SDK 通过 etcd 集群 广播事件,异步失效业务应用集群中其他节点的本地缓存,保证 集群最终一致;
TMC 热点发现
整体流程
TMC 热点发现流程分为四步:
数据收集:收集 Hermes-SDK 上报的 key 访问事件;
热度滑窗:对 App 的每个 Key,维护一个时间轮,记录基于当前时刻滑窗的访问热度;
热度汇聚:对 App 的所有 Key,以 \u0026lt;key,热度\u0026gt;的形式进行 热度排序汇总;
热点探测:对 App,从 热 Key 排序汇总 结果中选出 TopN 的热点 Key ,推送给 Hermes-SDK;
数据收集
Hermes-SDK 通过本地 rsyslog将 key 访问事件 以协议格式放入 kafka ,Hermes 服务端集群 的每个节点消费 kafka 消息,实时获取 key 访问事件。
访问事件协议格式如下:
appName:集群节点所属业务应用
uniqueKey:业务应用 key 访问事件 的 key
sendTime:业务应用 key 访问事件 的发生时间
weight:业务应用 key 访问事件 的访问权值
Hermes 服务端集群 节点将收集到的 key 访问事件 存储在本地内存中,内存数据结构为 Map\u0026lt;String,Map\u0026lt;String,LongAdder\u0026gt;\u0026gt;,对应业务含义映射为 Map\u0026lt;appName,Map\u0026lt;uniqueKey,热度\u0026gt;\u0026gt;。
热度滑窗
时间滑窗
Hermes 服务端集群 节点,对每个 App 的每个 key,维护了一个 时间轮:
- 时间轮中共 10 个 时间片,每个时间片记录当前 key 对应 3 秒时间周期的总访问次数;
- 时间轮 10 个时间片的记录累加即表示当前 key 从当前时间向前 30 秒时间窗口内的总访问次数;
映射任务
Hermes 服务端集群 节点,对每个 App 每 3 秒 生成一个 映射任务 ,交由节点内 “缓存映射线程池” 执行。映射任务 内容如下:
- 对当前 App,从 Map\u0026lt;appName,Map\u0026lt;uniqueKey,热度\u0026gt;\u0026gt;中取出 appName 对应的 Map Map\u0026lt;uniqueKey,热度\u0026gt;\u0026gt;;
- 遍历 Map\u0026lt;uniqueKey,热度\u0026gt;\u0026gt;中的 key,对每个 key 取出其热度存入其 时间轮 对应的时间片中;
热度汇聚
完成第二步“热度滑窗”后,映射任务 继续对当前 App 进行“热度汇聚”工作:
- 遍历 App 的 key,将每个 key 的 时间轮 热度进行汇总(即 30 秒时间窗口内总热度)得到探测时刻 滑窗总热度;
- 将 \u0026lt; key , 滑窗总热度 \u0026gt; 以排序集合的方式存入 Redis 存储服务 中,即 热度汇聚结果;
热点探测
- 在前几步,每 3 秒 一次的 映射任务 执行,对每个 App 都会产生一份当前时刻的 热度汇聚结果 ;
- Hermes 服务端集群 中的“热点探测”节点,对每个 App,只需周期性从其最近一份 热度汇聚结果 中取出达到热度阈值的 TopN 的 key 列表,即可得到本次探测的 热点 key 列表;
TMC 热点发现整体流程如下图:
特性总结
实时性
Hermes-SDK 基于rsyslog + kafka 实时上报 key 访问事件。映射任务 3 秒一个周期完成“热度滑窗” + “热度汇聚”工作,当有 热点访问场景 出现时最长 3 秒即可探测出对应 热点 key。
准确性
key 的热度汇聚结果由“基于时间轮实现的滑动窗口”汇聚得到,相对准确地反应当前及最近正在发生访问分布。
扩展性
Hermes 服务端集群节点无状态,节点数可基于 kafka 的 partition 数量横向扩展。
“热度滑窗” + “热度汇聚” 过程基于 App 数量,在单节点内多线程扩展。
TMC 实战效果
快手商家某次商品营销活动
有赞商家通过快手直播平台为某商品搞活动,造成该商品短时间内被集中访问产生访问热点,活动期间 TMC 记录的实际热点访问效果数据如下:
某核心应用的缓存请求\u0026amp;命中率曲线图
上图蓝线为应用集群调用get()方法访问缓存次数上图绿线为获取缓存操作命中TMC本地缓存的次数
上图为本地缓存命中率曲线图
可以看出活动期间缓存请求量及本地缓存命中量均有明显增长,本地缓存命中率达到近 80%(即应用集群中 80% 的缓存查询请求被 TMC 本地缓存拦截)。
热点缓存对应用访问的加速效果
上图为应用接口 QPS 曲线
上图为应用接口 RT 曲线
可以看出活动期间应用接口的请求量有明显增长,由于 TMC 本地缓存的效果应用接口的 RT 反而出现下降。
双十一期间部分应用 TMC 效果展示
商品域核心应用效果
活动域核心应用效果
TMC 功能展望
在有赞,TMC 目前已为商品中心、物流中心、库存中心、营销活动、用户中心、网关\u0026amp;消息等多个核心应用模块提供服务,后续应用也在陆续接入中。
TMC 在提供“热点探测” + “本地缓存”的核心能力同时,也为应用服务提供了灵活的配置选择,应用服务可以结合实际业务情况在“热点阈值”、“热点 key 探测数量”、“热点黑白名单”维度进行自由配置以达到更好的使用效果。
最后,TMC 的迭代还在持续进行中…
文章转载自公众号\u0026quot;有赞coder\u0026quot;:https://mp.weixin.qq.com/s?__biz=MzAxOTY5MDMxNA==\u0026amp;mid=2455759090\u0026amp;idx=1\u0026amp;sn=f9f0b49d7c1916672f9d4f63dab0c2b6\u0026amp;chksm=8c686ed7bb1fe7c1446838941ff1bdb5d0bd8738aa43c22d456cf9736e3068eb13a29f908403\u0026amp;scene=21#wechat_redirect
有赞透明多级缓存解决方案(TMC)设计思路的更多相关文章
- Redis 多级缓存架构和数据库与缓存双写不一致问题
采用三级缓存:nginx本地缓存+redis分布式缓存+tomcat堆缓存的多级缓存架构 时效性要求非常高的数据:库存 一般来说,显示的库存,都是时效性要求会相对高一些,因为随着商品的不断的交易,库存 ...
- Redis: 缓存过期、缓存雪崩、缓存穿透、缓存击穿(热点)、缓存并发(热点)、多级缓存、布隆过滤器
Redis: 缓存过期.缓存雪崩.缓存穿透.缓存击穿(热点).缓存并发(热点).多级缓存.布隆过滤器 2019年08月18日 16:34:24 hanchao5272 阅读数 1026更多 分类专栏: ...
- 「性能提升」扩展 Spring Cache 支持多级缓存
为什么多级缓存 缓存的引入是现在大部分系统所必须考虑的 redis 作为常用中间件,虽然我们一般业务系统(毕竟业务量有限)不会遇到如下图 在随着 data-size 的增大和数据结构的复杂的造成性能下 ...
- 通过Dapr实现一个简单的基于.net的微服务电商系统(十八)——服务保护之多级缓存
很久没有更新dapr系列了.今天带来的是一个小的组件集成,通过多级缓存框架来实现对服务的缓存保护,依旧是一个简易的演示以及对其设计原理思路的讲解,欢迎大家转发留言和star 目录:一.通过Dapr实现 ...
- CRL快速开发框架系列教程六(分布式缓存解决方案)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
- Java高并发--CPU多级缓存与Java内存模型
Java高并发--CPU多级缓存与Java内存模型 主要是学习慕课网实战视频<Java并发编程入门与高并发面试>的笔记 CPU多级缓存 为什么需要CPU缓存:CPU的频率太快,以至于主存跟 ...
- 001-CPU多级缓存架构
一.基本概念 大致关系: CPU Cache --> 前端总线 FSB (下图中的Bus) --> Memory 内存 CPU 为了更快的执行代码.于是当从内存中读取数据时,并不是只读自己 ...
- 《深入理解mybatis原理4》 MyBatis缓存机制的设计与实现
<深入理解mybatis原理> MyBatis缓存机制的设计与实现 本文主要讲解MyBatis非常棒的缓存机制的设计原理,给读者们介绍一下MyBatis的缓存机制的轮廓,然后会分别针对缓存 ...
- (转)unity web 缓存解决方案
unity web 缓存解决方案 官方发布 web版限制五十M缓存,根据自己的经验绕了过去,解决了缓存的问题.带工程,带源代码.由于本人的水平也有限,是用JS来解决的,如果你还是没有头绪,可以购买来试 ...
随机推荐
- MySQL 解析 json 数组(mysql在5.7开始支持json解析)
1.函数 JSON_EXTRACT 表数据格式: 查询结果: sql 语句: -- ---------------------------- -- Table structure for json ...
- sNews1.7在wamp上的部署及运行
安装前的准备 Apache Server 必须开启 mod_rewrite 模块 MySQL 数据库版本在 4.x以上 PHP: >= 4.x 并且 <=5.6 1.我使用的是wampse ...
- SQL Server 存储过程分页。
create proc proc_Product@page int, -- 页数@row int -- 一页有几行Asdeclare @newpage int set @newpage = (@ ...
- 薅羊毛? 月入10万? | 这是自动化测试老司机的特长--Python自动化带你薅视频红包,一个都不放过!
一.目标场景 如今短视频横行的时代,以某短视频为首的,背后依靠着强大的资金后盾,疯狂地对平台用户进行红包轰炸. 与传统的红包不一样,视频红包包含位置的不确定性.大小不确定性.元素 ID 的不确定性 ...
- MySQL入门,第八部分,多表查询(一)
一.数据库脚本 #-------------------------------------------------------------------------------- #--------- ...
- 路由与交换,cisco路由器配置,静态路由
网络是一个大型的拓扑结构,在路由表中,最重要的是管理距离和度量值 管理距离 管理距离用来确定路由的优先级.管理距离的范围是0-255之间的整数值.值越低代表优先级越高.0代表最高优先级.并且只有直连路 ...
- "段落"组件:<p> —— 快应用组件库H-UI
 <import name="p" src="../Common/ui/h-ui/text/c_p"></import> <te ...
- Spring Cloud 系列之 Consul 注册中心(二)
本篇文章为系列文章,未读第一集的同学请猛戳这里:Spring Cloud 系列之 Consul 注册中心(一) 本篇文章讲解 Consul 集群环境的搭建. Consul 集群 上图是一个简单的 Co ...
- winform怎么实现财务上凭证录入和打印
序言 现如今存在的财务软件层出不穷,怎么样让自己的业务系统与财务系统相结合,往往是很多公司头痛的问题.大多数公司也没有这个能力都去开发一套属于自己的财务软件,所以只有对接像金蝶用友这类的财务软件,花费 ...
- 15.ASP.NET Core 应用程序中的静态文件中间件
在这篇文章中,我将向大家介绍,如何使用中间件组件来处理静态文件.这篇文章中,我们讨论下面几个问题: 在ASP.NET Core中,我们需要把静态文件存放在哪里? 在ASP.NET Core中 wwwr ...