数据大致内容及格式

194.237.142.21 - - [18/Sep/2013:06:49:18 +0000] "GET /wp-content/uploads/2013/07/rstudio-git3.png HTTP/1.1" 304 0 "-" "Mozilla/4.0 (compatible;)"
183.49.46.228 - - [18/Sep/2013:06:49:23 +0000] "-" 400 0 "-" "-"
163.177.71.12 - - [18/Sep/2013:06:49:33 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
163.177.71.12 - - [18/Sep/2013:06:49:36 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
101.226.68.137 - - [18/Sep/2013:06:49:42 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
101.226.68.137 - - [18/Sep/2013:06:49:45 +0000] "HEAD / HTTP/1.1" 200 20 "-" "DNSPod-Monitor/1.0"
60.208.6.156 - - [18/Sep/2013:06:49:48 +0000] "GET /wp-content/uploads/2013/07/rcassandra.png HTTP/1.0" 200 185524 "http://cos.name/category/software/packages/" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
……
……

统计PV(PageViews)

就是统计日志文件中有多少条数据

关于点击流日志的各种指标可以查看【Hadoop离线基础总结】网站流量日志数据分析系统

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object PvCount {
def main(args: Array[String]): Unit = { //获取SparkConf
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("PV-Count").set("spark.driver.host", "localhost")
//创建SparkContext
val sparkContext = new SparkContext(sparkConf)
//读取文件
val fileRDD: RDD[String] = sparkContext.textFile("/Users/zhaozhuang/Desktop/4、Spark/Spark第二天/第二天教案/资料/运营商日志/access.log")
//统计数量
val count = fileRDD.count() println("一共有"+count+"行数据") sparkContext.stop()
}
}

经统计后得出,数据有 14619条,也就是说PV量为14619


统计UV(Unique Visitor)

实际工作中,一般推荐用cookie而不是IP地址来对UV进行统计,但这里数据只有IP地址,所以目前就按IP算

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object UvCount {
def main(args: Array[String]): Unit = {
//获取SparkConf
val sparkConf = new SparkConf().setAppName("UV-Count").setMaster("local[2]").set("spark.driver.host","localhost")
//创建SparkContext
val sparkContext = new SparkContext(sparkConf)
//筛选日志
sparkContext.setLogLevel("WARN")
//读取文件
val fileRDD: RDD[String] = sparkContext.textFile("/Users/zhaozhuang/Desktop/4、Spark/Spark第二天/第二天教案/资料/运营商日志/access.log")
//从所有数据中剔除掉不需要的数据,只拿到IP地址
val getIpRDD: RDD[String] = fileRDD.map(_.split(" ")(0))
//对IP地址进行去重,去重后数据减少,就可以将分区缩减为1个
val distinctedRDD: RDD[String] = getIpRDD.distinct(1)
//对去重后的数据进行计数统计
val count: Long = distinctedRDD.count() println(count) sparkContext.stop()
}
}

统计得出UV量为1050


求取TopN

有两种方法可以用,take()top() 都可以

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object GetTopN {
def main(args: Array[String]): Unit = {
//获取SparkConf
val sparkConf = new SparkConf().setMaster("local[2]").set("spark.driver.host", "localhost").setAppName("getTopN")
//获取SparkContext
val sparkContext: SparkContext = new SparkContext(sparkConf)
//读取文件
val fileRDD: RDD[String] = sparkContext.textFile("/Users/zhaozhuang/Desktop/4、Spark/Spark第二天/第二天教案/资料/运营商日志/access.log")
//筛选日志
sparkContext.setLogLevel("WARN") //194.237.142.21 - - [18/Sep/2013:06:49:18 +0000] "GET /wp-content/uploads/2013/07/rstudio-git3.png HTTP/1.1" 304 0 "-" "Mozilla/4.0 (compatible;)"
//以上是数据格式,首先对数据进行切割
val valueRDD: RDD[Array[String]] = fileRDD.map(x => x.split(" "))
/*
数据切割后的形式
194.237.142.21
-
-
[18/Sep/2013:06:49:18
+0000]
"GET
/wp-content/uploads/2013/07/rstudio-git3.png
HTTP/1.1"
304
0
"-"
"Mozilla/4.0
(compatible;)"
*/
//日志数据中,下标为10的数据为我们要求取的数据(http_refer),所以切割后数组中少于10条的为无效数据
//先将无效数据过滤掉
val filterRDD: RDD[Array[String]] = valueRDD.filter(arr => arr.length > 10)
//获取每一个http_refer的url,并计作一次
val urlAndOne: RDD[(String, Int)] = filterRDD.map(x => (x(10), 1))
//将url相同的次数相加
val reduceRDD: RDD[(String, Int)] = urlAndOne.reduceByKey(_ + _)
//将拿到的url+次数进行排序,false为降序,不填或true为升序
val sortRDD: RDD[(String, Int)] = reduceRDD.sortBy(x => x._2, false)
//求取TopN,两种方法take(N)或者top(N)
val topRDD: Array[(String, Int)] = sortRDD.take(10) println(topRDD.toBuffer)
sparkContext.stop()
}
}

拿到控制台结果为:

ArrayBuffer(("-",5205), (“http://blog.fens.me/category/hadoop-action/”,547), (“http://blog.fens.me/”,377), (“http://blog.fens.me/wp-admin/post.php?post=2445&action=edit&message=10”,360), (“http://blog.fens.me/r-json-rjson/”,274), (“http://blog.fens.me/angularjs-webstorm-ide/”,271), (“http://blog.fens.me/wp-content/themes/silesia/style.css”,228), (“http://blog.fens.me/nodejs-express3/”,198), (“http://blog.fens.me/hadoop-mahout-roadmap/”,182), (“http://blog.fens.me/vps-ip-dns/”,176))

【Spark】通过Spark实现点击流日志分析的更多相关文章

  1. 大数据学习——点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上

    点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上 1需求说明 点击流日志每天都10T,在业务应用服务器上,需要准实时上传至(Hadoop HDFS)上 2需求分 ...

  2. 基于Kafka+Spark Streaming+HBase实时点击流案例

    背景 Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver- ...

  3. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  4. Spark 实践——基于 Spark Streaming 的实时日志分析系统

    本文基于<Spark 最佳实践>第6章 Spark 流式计算. 我们知道网站用户访问流量是不间断的,基于网站的访问日志,即 Web log 分析是典型的流式实时计算应用场景.比如百度统计, ...

  5. .Spark Streaming(上)--实时流计算Spark Streaming原理介

    Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...

  6. spark提交异常日志分析

    java.lang.NoSuchMethodError: org.apache.spark.sql.SQLContext.sql(Ljava/lang/String;)Lorg/apache/spar ...

  7. Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续)

    Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过 ...

  8. Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析

    Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28 ...

  9. 024 关于spark中日志分析案例

    1.四个需求 需求一:求contentsize的平均值.最小值.最大值 需求二:请各个不同返回值的出现的数据 ===> wordCount程序 需求三:获取访问次数超过N次的IP地址 需求四:获 ...

随机推荐

  1. GeoGebra的一些指令名字

    列举出老师上课提出的一些命令 比较不常见的命令 1.取得函数上一点的坐标值x(A).y(A).z(A) 2.复数指令real() imaginary() 复数中的虚数应该使用Alt+i打出 点的表示指 ...

  2. 前端架构演进及主流UI

    @ 目录 前端三要素 JavaScript 框架 NodeJs 常用UI框架 前后端分离的演进 MVVM模式 总结 前端演进到现在,各种技术框架已经层出不穷了,作为一名开发少不了要干一些前端的活儿,那 ...

  3. CSRF(跨站请求伪造)学习总结

    前言 参考大佬的文章,附上地址 https://www.freebuf.com/articles/web/118352.html 什么是CSRF? CSRF,中文名字,跨站请求伪造,听起来是不是和XS ...

  4. NCTF2019 小部分题解

    前言 礼拜五领航杯打的比较累,做不出WEB,D3CTF没用,做了NJCTF的一些题目(懒,睡觉到12点起) Misc 第一次比赛先去做misc,以前一直做WEB,以后要WEB+MISC做.礼拜六下午做 ...

  5. 如何用TensorFlow实现线性回归

    环境Anaconda 废话不多说,关键看代码 import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' tf.a ...

  6. spring源码阅读笔记09:循环依赖

    前面的文章一直在研究Spring创建Bean的整个过程,创建一个bean是一个非常复杂的过程,而其中最难以理解的就是对循环依赖的处理,本文就来研究一下spring是如何处理循环依赖的. 1. 什么是循 ...

  7. 使用 Python 控制自己的电脑和键盘是一种什么样的体验?python学习的正确姿势

    可能有时候你需要在电脑做一些重复的点击或者提交表单等操作,如果能通过 Python 预先写好相关的操作指令,让它帮你操作,然后你自己爱干嘛干嘛去,有点 “按键精灵” 的意思,是不是感觉有点爽呢? 那么 ...

  8. JavaScript--'data-'的用法(1)

    HTML5为我们提供了一个强大的功能,前段也也能实现后台数据库的效果,例如data-xxx <a href="#myModal" data-industry_id=" ...

  9. elementaryos5安装mysql5.7、php7.2、nginx1.14.0

    一.mysql5.7 安装mysql5.7: sudo apt-get install mysql-server-5.7 查看安装的mysql版本: mysql -V 5.7版本mysql安装过程中以 ...

  10. 最新版navicat 12.1 破解(Keygen注册机)

    最新注册机链接:https://pan.baidu.com/s/1fFCRkkXMzk6CFpbttCDr7w   提取码:40xo 1.下载安装Navicat 在Navicat关闭的情况下运行注册机 ...