poj1734Sightseeing trip
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 6811 | Accepted: 2602 | Special Judge |
Description
In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input
Output
Sample Input
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output
1 3 5 2
Source
#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm> #define inf 0x7ffffff using namespace std; int n, m,a[][],d[][],head[][],res,tot,ans[]; int main()
{
while (~scanf("%d%d", &n, &m))
{
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
{
a[i][j] = d[i][j] = inf;
head[i][j] = i;
}
for (int i = ; i <= m; i++)
{
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
a[x][y] = a[y][x] = d[x][y] = d[y][x] = min(z, a[x][y]);
}
res = inf;
for (int k = ; k <= n; k++)
{
for (int i = ; i < k; i++)
{
for (int j = i + ; j < k; j++)
{
int temp = d[i][j] + a[i][k] + a[k][j];
if (temp < res)
{
res = temp;
tot = ;
int p = j;
while (p != i)
{
ans[++tot] = p;
p = head[i][p];
}
ans[++tot] = i;
ans[++tot] = k;
}
}
}
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if (d[i][j] > d[i][k] + d[k][j])
{
d[i][j] = d[i][k] + d[k][j];
head[i][j] = head[k][j];
}
}
if (res == inf)
puts("No solution.\n");
else
{
printf("%d", ans[]);
for (int i = ; i <= tot; i++)
printf(" %d", ans[i]);
printf("\n");
}
} return ;
}
poj1734Sightseeing trip的更多相关文章
- 2018.09.15 poj1734Sightseeing trip(floyd求最小环)
跟hdu1599差不多.. 只是需要输出方案. 这个可以递归求解. 代码: #include<iostream> #include<cstdio> #include<cs ...
- poj1734Sightseeing trip——无向图求最小环
题目:http://poj.org/problem?id=1734 无向图求最小环,用floyd: 在每个k点更新f[i][j]之前,以k点作为直接连到i,j组成一个环的点,这样找一下最小环: 注意必 ...
- Lesson 4 An existing trip
Text I have just received a letter from my brother,Tim. He is in Australia. He has been there for si ...
- dp or 贪心 --- hdu : Road Trip
Road Trip Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 29 ...
- 【poj1041】 John's trip
http://poj.org/problem?id=1041 (题目链接) 题意 给出一张无向图,求字典序最小欧拉回路. Solution 这鬼畜的输入是什么心态啊mdzz,这里用vector储存边, ...
- 1301. The Trip
A number of students are members of a club that travels annually to exotic locations. Their destinat ...
- 三分 --- POJ 3301 Texas Trip
Texas Trip Problem's Link: http://poj.org/problem?id=3301 Mean: 给定n(n <= 30)个点,求出包含这些点的面积最小的正方形 ...
- 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem C: The Trip(水题)
Problem C: The Trip Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 19 Solved: 3[Submit][Status][Web ...
- hdu 3018 Ant Trip 欧拉回路+并查集
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
随机推荐
- js倒计时小插件(兼容大部分浏览器)
精确到天的倒计时 <script language="JavaScript"> <!-- // (c) Henryk Gajewski var urodz= ne ...
- 阻止form元素内的input标签回车提交表单
<form></form>标签内input元素回车会默认提交表单. 阻止回车默认提交表单: $('form').on('keydown', function (event) { ...
- oracle 命中率
一般在I/O 使用中,为了提高系统处理速度,系统提前将数据读入一块内存区,叫高速缓存,但提前读入的数据未必就是需要的,这就是命中率..计算公式为 命中率=1-(physical reads/(db b ...
- 【线性基】bzoj2322: [BeiJing2011]梦想封印
线性基的思维题+图常见套路 Description 渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解. 为了分析一种奇特的称为梦想封印(Fantasy Seal)的特技,需要引 ...
- [BZOJ] 1563: [NOI2009]诗人小G
1D/1D的方程,代价函数是一个p次函数,典型的决策单调性 用单调队列(其实算单调栈)维护决策点,优化转移 复杂度\(O(nlogn)\) #include<iostream> #incl ...
- RSA非对称加密算法实现过程
RSA非对称加密算法实现过程 非对称加密算法有很多,RSA算法就是其中比较出名的算法之一,下面是具体实现过程 <?php /** */ class Rsa { /** * private key ...
- 【php】instanceof
instanceof 的使用还有一些陷阱必须了解.在 PHP 5.1.0 之前,如果要检查的类名称不存在,instanceof 会调用__autoload().另外,如果该类没有被装载则会产生一个致命 ...
- 02 Django模型
ORM 的作用 ORM 作用示意图 ORM 框架的功能 建立模型类和表之间的对应关系,允许通过面向对象的方式来操作数据库 根据设计的模型类生成数据库中的表格. 通过方便的配置就可以进行数据库的切换 数 ...
- Linux对大容量硬盘分区
随着单块硬盘容量的增大和硬盘价格的下降,2TB的磁盘使用将很快会普及,由于传统的MBR方式存储分区表的方 式缺陷,将可能导致很多分区工具不能正确地读取大于2TB容量的硬盘而无法正常分区大容量硬盘.其实 ...
- sql中group by 和having 用法解析
--sql中的group by 用法解析:-- Group By语句从英文的字面意义上理解就是“根据(by)一定的规则进行分组(Group)”.--它的作用是通过一定的规则将一个数据集划分成若干个小的 ...