Balls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1196   Accepted: 783

Description

The classic Two Glass Balls brain-teaser is often posed as:

"Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?"

Suppose that we had only one ball. We'd have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.

Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we're in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we've already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n.

You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).

Output

For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.

Sample Input

4
1 2 10
2 2 100
3 2 300
4 25 900

Sample Output

1 4
2 14
3 24
4 10

Source

 
 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 1000009
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000007
#define lowbit(x) x&(-x)
#define inf 100000
int t,a,b,m;
int dp[][];
/*
dp[i][j]:i层楼,J个球在最坏的情况下需要的次数
枚举前面的k : 1 ~ i
没碎 dp[i][j]=dp[i-k][j]+1//还有i-k层楼,下面的楼肯定不需要了,还有j个球
碎了 dp[i][j]=dp[k-1][j-1]+1//往下k-1层,上面的楼肯定不用查了,还有j-1个球
dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-1][j-1])+1);//+1因为 k 层楼需要一次
*/
void init(){
gep(i,,){
gep(j,,){
dp[i][j]=inf;
}
}
gep(i,,) dp[][i]=;
//从1开始
gep(i,,){
gep(j,,){
gep(k,,i){
dp[i][j]=min(dp[i][j],max(dp[i-k][j],dp[k-][j-])+);
}
}
}
}
int main()
{
init();
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&a,&b,&m);
printf("%d %d\n",a,dp[m][b]);
}
return ;
}

poj 3783的更多相关文章

  1. poj 3783 Balls 动态规划 100层楼投鸡蛋问题

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...

  2. POJ 3783 Balls --扔鸡蛋问题 经典DP

    题目链接 这个问题是谷歌面试题的加强版,面试题问的是100层楼2个鸡蛋最坏扔多少次:传送门. 下面我们来研究下这个题,B个鸡蛋M层楼扔多少次. 题意:给定B (B <= 50) 个一样的球,从 ...

  3. Balls(poj 3783)

    The classic Two Glass Balls brain-teaser is often posed as: “Given two identical glass spheres, you ...

  4. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  5. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  6. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  7. POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37427   Accepted: 16288 Descr ...

  8. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  9. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

随机推荐

  1. LCT 学习笔记

    LCT学习笔记 前言 自己定的学习计划看起来完不成了(两天没学东西,全在补题),决定赶快学点东西 于是就学LCT了 简介 Link/Cut Tree是一种数据结构,我们用它解决动态树问题 但是LCT不 ...

  2. WebView使用遇到的坑

    1.为了防止内存泄漏,关闭界面的时候一定要记得 webView.distroy()  并且把webView置为null 2.尽量不要在代码中new控件 尽量不要在代码中new控件  尽量不要在代码中n ...

  3. c指针参数常见错误

    参数的地址是可以修改的,修改后的地址是不可能传回给调用处的指针变量.也就是说,可以修改参数地址所指的单元的值,这是可以传回到调用处的变量里面的. #include <stdio.h> #i ...

  4. CPU占用分析

    用TOP命令很容易定位到时谁占用CPU最高 多线程的进程,我们要知道实际上占用cpu的最小单位是线程,所以肯定是众线程中的某一个或几个占用CPU过高导致的.top -H -p pid命令查看进程内各个 ...

  5. 再看SpringMVC通过一个DispatcherServlet处理Servlet

    初始入口: org.springframework.web.context.ContextLoaderListener org.springframework.web.context.ContextL ...

  6. python flask学习(3)

    这次主要学习web表单.学了下,很像是Django的form表单验证.不过有许多的不同.可以说是功能更加碎块化.Django的验证方式是很固定和严谨的,风格完全不同. 尽管Flask的请求对象提供的对 ...

  7. Linux 环境下安装 Nginx+php+mysql 开发环境

    一直以来都没有养成记录学习的好习惯,我想从这么一天开始,把自己学习和工作中的经验和坑都记录下来.等到以后老的时候还有可以回忆的地方. 最近在学习linux,虽然已经玩linux很久了,但是没有怎么用心 ...

  8. apache关联php

    LoadModule php5_module "D:/softs/php/php5apache2_2.dll" AddType application/x-httpd-php .p ...

  9. 《高性能MySQL》读书笔记之创建高性能的索引

    索引是存储引擎用于快速找到记录的一种数据结构.索引优化是对查询性能优化的最有效手段.索引能够轻易将查询性能提高几个数量级.创建一个最优的索引经常需要重写查询.5.1 索引基础 在MySQL中,存储引擎 ...

  10. django创建超级用户

    终端输入 python3 manage.py createsuperuser 按照提示进行操作即可 不输入用户名会给你默认一个用户名,输入密码是在原处不动的,其实已经在输入了. 创建超级用户是为了能够 ...