元算法是对其他算法进行组合的一种方式。
单层决策树实际上是一个单节点的决策树。
adaboost
优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整
缺点:对离群点敏感
适用数据类型:数值型和标称型数据
bagging:基于数据随机重抽样的分类器构建方法
自举汇聚法,也称为bagging方法,是在从原始数据集选择S次后得到的S个新数据集的一种技术。
新数据集和原数据集的大小相等。每个数据集都是通过在原始数据集中随机选择一个样本来进行替换得到的。
这里的替换就意味着可以多次选择同一个样本。这一性质允许新数据集中可以有重复的值,而原始数据集的
某些值在新集合中则不再出现。
在S个数据集建好之后,将某个学习算法分别作用于每个数据集就得到了s个分类器。当我们要对新数据进行
分类时,就可以应用这s个分类器进行分类。与此同时,选择分类器投票结果中最多的类别作为最后的分类结果。
boosting是一种与bagging很类似的技术。不论是在boosting还是bagging当中,所使用的多个分类器的类型都是
一致的。但是在前者当中,不同的分类器是通过串行训练而获得的,每个新分类器都根据已训练出的分类器的性
能进行训练。boosting是通过集中关注被已有分类器错分的那些数据来获得新的分类器
由于boosting分类器的结果是基于所有分类器的加权求和结果的,因此boosting与bagging不太一样,bagging中的
分类器权重是相等的,而boosting中的分类器权重并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。
Adaboost的一般流程
(1)收集数据:可以适用任意方法
(2)准备数据:依赖于所使用的弱分类器类型,本章使用的是单层决策树,这种分类器可以处理任何数据类型。
当然也可以使用任意分类器作为弱分类器,第2章到第6章中的任一分类器都可以充当弱分类器。作为弱分类器,简单分类器的效果更好。
(3)分析数据:可以使用任意方法
(4)训练算法:AdaBoost的大部分时间都用在训练上,分类器将多次在同一数据集上训练弱分类器
(5)测试算法:计算分类的错误率
(6)使用算法:同SVM一样,AdaBoost预测两个类别中的一个。如果想把它应用到多个类别的场合,
那么就要像多类SVM中的做法一样对AdaBoost进行修改
弱分类器就是说在二分类下错误率会高于50%,而'强'分类器的错误率会低很多。
AdaBoost是adaptive boosting(自适应 boosting)的缩写,其运行过程如下:训练数据中的每个样本,并赋予其一个权重,
这些权重构成了向量D。一开始,这些权重都初始化称相等值。首先在训练数据上训练出一个弱分类器并计算该分类器的错
误率,然后在同一个数据集上再次训练弱分类器。在分类器的第二次训练当中,将会重新调整每个样本的权重,其中第一次
分对的样本的权重将会降低,而第一次分许哦的样本权重将会提高。为了从所有弱分类器中得到最终的分类结果,AdaBoost为
每一个分类器都分配了一个权重alpha,这些alpha值是基于每个弱分类器的错误率进行计算的。

 rom numpy import *

 def loadSimpData():
datMat = matrix([[ 1. , 2.1],
[ 2. , 1.1],
[ 1.3, 1. ],
[ 1. , 1. ],
[ 2. , 1. ]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return datMat,classLabels '''
接下来构造单层决策树。第一个函数将用于测试是否有某个值小于或大于我们正在测试的阈值。
第二个函数则更加复杂一些,它会在一个加权数据集中循环,并找到具有最低错误率的单层决策树。
这个程序的伪代码看起来大致如下:
将最小错误率minError设为+∞
对数据集中的每一个特征(第一层循环):
对每个步长(第二层循环):
对每个不等号(第三层循环):
建立一颗单层决策树并利用加权数据集对它进行测试
如果错误率低于minError,则将当前单层决策树设为最佳单层决策树
返回最佳单层决策树
''' def stumpClassify(dataMatrix, dimen, threshVal, threshIneq): # just classify the data
retArray = ones((shape(dataMatrix)[0], 1))
if threshIneq == 'lt':
retArray[dataMatrix[:, dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:, dimen] > threshVal] = -1.0
return retArray def buildStump(dataArr, classLabels, D):
dataMatrix = mat(dataArr);
labelMat = mat(classLabels).T
m, n = shape(dataMatrix)
numSteps = 10.0;
bestStump = {};
bestClasEst = mat(zeros((m, 1)))
minError = inf # init error sum, to +infinity
for i in range(n): # loop over all dimensions
rangeMin = dataMatrix[:, i].min();
rangeMax = dataMatrix[:, i].max();
stepSize = (rangeMax - rangeMin) / numSteps
for j in range(-1, int(numSteps) + 1): # loop over all range in current dimension
for inequal in ['lt', 'gt']: # go over less than and greater than
threshVal = (rangeMin + float(j) * stepSize)
predictedVals = stumpClassify(dataMatrix, i, threshVal,
inequal) # call stump classify with i, j, lessThan
errArr = mat(ones((m, 1)))
errArr[predictedVals == labelMat] = 0
weightedError = D.T * errArr # calc total error multiplied by D
# print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump, minError, bestClasEst '''
完整AdaBoost算法的实现
整个实现的伪代码如下:
对每次迭代:
利用buildStump()函数找到最佳的单层决策树
将最佳单层决策树加入到单层决策树数组
计算alpha
计算新的权重向量D
更新累计类别的估计值
如果错误率等于0.0,则退出循环 '''
def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
D = mat(ones((m,1))/m) #init D to all equal
aggClassEst = mat(zeros((m,1)))
for i in range(numIt):
bestStump,error,classEst = buildStump(dataArr,classLabels,D)#build Stump
#print "D:",D.T
alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#calc alpha, throw in max(error,eps) to account for error=0
bestStump['alpha'] = alpha
weakClassArr.append(bestStump) #store Stump Params in Array
#print "classEst: ",classEst.T
expon = multiply(-1*alpha*mat(classLabels).T,classEst) #exponent for D calc, getting messy
D = multiply(D,exp(expon)) #Calc New D for next iteration
D = D/D.sum()
#calc training error of all classifiers, if this is 0 quit for loop early (use break)
aggClassEst += alpha*classEst
#print "aggClassEst: ",aggClassEst.T
aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))
errorRate = aggErrors.sum()/m
print("total error: ",errorRate)
if errorRate == 0.0: break
return weakClassArr,aggClassEst def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m,1)))
for i in range(len(classifierArr)):
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],classifierArr[i]['thresh'],classifierArr[i]['ineq'])#call stump classify
aggClassEst += classifierArr[i]['alpha']*classEst
print(aggClassEst)
return sign(aggClassEst) dataMat,classLabels=loadSimpData()
D=mat(ones((5,1))/5)
A,B,C=buildStump(dataMat,classLabels,D)
classifierArr=adaBoostTrainDS(dataMat,classLabels,30)
print(classifierArr)
adaClassify([0,0],classifierArr)

小结:集成方法通过组合多个分类器的分类结果,获得了比简单的单分类器更好的分类结果。有一些利用不同分类器的继承方法,但是本章只介绍了那些利用同一类分类器的集成方法。

多个分类器组合可能会进一步凸显单分类器的不足,比如过拟合问题。如果分类器之间差别显著,那么多个分类器组合就可能会缓解这一问题。分类器之间的差别可以是算法本身或者是应用于算法上的数据的不同

本章介绍的两种集成方法是bagging和boosting。在bagging中,是通过随机抽样的替换方式,得到了与原始数据集规模一样的数据集。而boosting在bagging的思路上更进了一步,他在数据集上顺序应用了多个不同的分类器。另一个成功的继承方法就是随机森林,但是由于随机森林不如adaboost流行,所以本书并没有对他进行介绍

本章介绍了boosting方法中最流行的一个称为AdaBoost的算法。AdaBoost以弱学习器作为基分类器,并且输入数据,使其通过权重向量进行加权。在第一次迭代当中,所有数据都等权重。但是在后续的迭代当中,前次迭代中分错的数据的权重会增大。这种针对错误的调节能力正是Adaboost的长处。

本章以单层决策树作为弱学习器构建了AdaBoost分类器。实际上,AdaBoost函数可以应用于任意分类器,只要该分类器能够处理加权数据即可,AdaBoost算法十分强大,它能够快速处理其他分类器很难处理的数据集。

非均衡分类问题是指在分类器训练时正例数目和反例数目不相等(相差很大)。该问题在错分正例和反例不同时也存在。

本章介绍了通过过抽样和欠抽样方法来调节数据集中的正例和反例数目。另外一种可能更好的非均衡问题的处理方法,就是在训练分类器时将错误的代价考虑在内

adaboost python实现小样例的更多相关文章

  1. 决策树python实现小样例

    我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优 ...

  2. Logistic回归python实现小样例

    假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类.Lo ...

  3. KNN算法python实现小样例

    K近邻算法概述优点:精度高.对异常数据不敏感.无数据输入假定缺点:计算复杂度高.空间复杂度高适用数据范围:数值型和标称型工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签 ...

  4. paip.输入法编程--英文ati化By音标原理与中文atiEn处理流程 python 代码为例

    paip.输入法编程--英文ati化By音标原理与中文atiEn处理流程 python 代码为例 #---目标 1. en vs enPHati 2.en vs enPhAtiSmp 3.cn vs ...

  5. Spring DI模式 小样例

           今儿跟同事讨论起来spring早期的,通过大篇幅xml的配置演变到今天annotation的过程,然后随手写了个小样例,感觉还不错,贴到这里留个纪念. 样例就是用JAVA API的方式, ...

  6. SpringMVC+Spring+Hibernate的小样例

    Strusts2+Spring+Hibernate尽管是主流的WEB开发框架,可是SpringMVC有越来越多的人使用了.确实也很好用.用得爽! 这里实现了一个SpringMVC+Spring+Hib ...

  7. 使用Dagger2创建的第一个小样例

    将Dagger系列的咖啡壶样例再做一下简化,作为Dagger2的入门的第一个小样例. 场景描写叙述:有一个电水壶,它使用一个加热器来烧水.电水壶具备的功能有:開始加热(on方法),结束加热(off方法 ...

  8. python 多线程中同步的小样例

    #!/usr/bin/python # -*- coding: UTF-8 -*- # 在一个资源池中.获取资源 # Author: zhang # Date: 2015-7-27 import ti ...

  9. CART树 python小样例

    决策树不断将数据切分成小数据集,直到所有目标变量完全相同,或者数据不能再切分为止,决策时是一种贪心算法,它要在给定的时间内做出最佳选择,但并不关心能否达到最优 树回归 优点:可以对复杂和非线性的数据建 ...

随机推荐

  1. swift 2特性记录

    swift 团队一直在优化,让大家准备在秋天的时候,迁移到swift2做准备. 一.错误处理 异常处理,不是NSError对象和双指针. 可以使用 throws   来指定方法来抛出一个错误. 调用d ...

  2. 学习笔记:SVG和Canvas

    SVG SVG 与 Flash 类似,都是用于二维矢量图形,二者的区别在于,SVG 是一个 W3C 标准,基于 XML,是开放的.因为是 W3C 标准,SVG 与其他的 W3C 标准,比如 CSS.D ...

  3. CSS文档优化

    首先了解下CSS的渲染逻辑,它是从标记的最后一位开始搜索的,例如:.myclass li a,首选它会遍历所有的<a>,然后看哪些<a>之前有<li>,然后再看哪些 ...

  4. redis---安全设置

    redis的安全性是通过设置口令来实现的. 首先打开redis的配置文件,我的是在/etc/redis/redis.conf,个人的路径可能会有不同,可以自行查找. 打开redis.conf文件以后, ...

  5. Java图形界面开发—简易登录注册小程序

    登录注册小代码,将学过的一些小知识融合在一起进行了使用,加深印象.本例中如果有注释不详细的地方,详见其它博客. Java程序操作数据库SQLserver详解 功能介绍:简单的登录注册系统,使用了数据库 ...

  6. SqlServer查询文件组被占用情况

    在SqlServer中,删除一个文件组 alter database [xxxxx] remove filegroup FGMonthTurnIntroduceByMonth13 有时候会遇到如下报错 ...

  7. GIT教程笔记

    GIT的工作流程: 先在工作目录中添加.修改文件 一般是在工作目录建立你的工程文件夹,然后通过命令行进入文件夹后  git init 初始化 将需要进行版本管理的文件放入缓存区  git add 文件 ...

  8. 【远程重启】使用windows自带的shutdown命令远程重启服务器(测试不行,此文作废)

    net use \\IP \ipc$ "password" /user:"username" shutdown -r -m \\IP -t 0 -f 添加远程关 ...

  9. pat乙级1045

    从左到右扫描时记录扫描到当前下标为止的最大值,如果当前元素大于这个最大值,那么它就大于它左边的所有值.同理,从右到左扫描记录扫描到当前下标为止的最小值,如果当前元素小于这个最大小值,那么它就小于它右边 ...

  10. Coursera 算法二 week2 Seam Carving

    这周作业设计到的算法是有向无环图的最短路径算法,只需要按照顶点的拓扑顺序去放松顶点即可.而在这个题目中拓扑顺序就是按照行的顺序或列的顺序. 用到的数据结构为一个二维数组picture同来存储每个像素的 ...