题目大意

已知一个长度为\(n\)的序列\(a_1,a_2,...,a_n\)对于每个\(1\leq i\leq n\),找到最小的非负整数\(p\)满足:

对于任意的\(j\), \(a_j \leq a_i + p - \sqrt{\vert{i-j}\vert{}}\)

题解

我们化简不等式+分类讨论可以得到:

\[f_i = max{\sqrt{i-j} + a_j} - a_i, \text{$j < i$}
\]

\[f_i = max{\sqrt{j-i} + a_j} - a_i, \text{$j > i$}
\]

我们可以正反都dp一遍,这样就剩下了一个式子:

\(f_i = max{\sqrt{i-j} + a_j} - a_i\)

我们发现,max中的式子是具有单调性的,什么单调性呢...

我们知道对于每个位置\(i\)都会选取一个最优决策点\(j\),

我们称\(j\)对\(i\)做出了贡献,那么我们知道:

对于任意的一个点\(i\)一定会对一段区间连续地做出贡献.

并且下标和区间所对应的位置都是单调的.

我们可以采用一种二分式的单调队列来处理这个问题

Code

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 500010;
double f[maxn],g[maxn];
int a[maxn];
inline double calc(int j,int i){
return a[j] + sqrt(double(i-j));
}
struct Node{
int p,l,r;
Node(){}
Node(int a,int b,int c){p=a;l=b;r=c;}
}q[maxn];
int l,r,n;
inline void dp(double *f){
l = 0;r = -1;
f[1] = .0;
q[++r] = Node(1,2,n);
for(int i=2;i<=n;++i){
++q[l].l;
while(i > q[l].r) ++l;
f[i] = calc(q[l].p,i) - a[i];
if(calc(q[r].p,n) > calc(i,n)) continue;
while(l <= r && calc(q[r].p,q[r].l) < calc(i,q[r].l)) --r;
if(l <= r){
int ls = q[r].l,rs = q[r].r;
int x = -1;
while(ls <= rs){
int mid = (ls+rs) >> 1;
if(calc(i,mid) >= calc(q[r].p,mid)) x = mid,rs = mid-1;
else ls = mid+1;
}
q[r].r = x - 1;
q[++r] = Node(i,x,n);
}else q[++r] = Node(i,i+1,n);
}
}
int main(){
read(n);
for(int i=1;i<=n;++i) read(a[i]);
dp(f);reverse(a+1,a+n+1);
dp(g);reverse(g+1,g+n+1);
for(int i=1;i<=n;++i){
printf("%d\n",(int)ceil(max(0.0,max(f[i],g[i]))));
}
getchar();getchar();
return 0;
}

bzoj 2216: Lightning Conductor 单调队列优化dp的更多相关文章

  1. BZOJ 1233 干草堆 (单调队列优化DP)

    $ BZOJ~1233~~ $ 干草堆: (题目特殊性质) $ solution: $ 很妙的一道题目,开始看了一眼觉得是个傻逼贪心,从后往前当前层能多短就多短,尽量节省花费.但是这是DP专题,怎么会 ...

  2. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  3. BZOJ 2806: [Ctsc2012]Cheat(单调队列优化dp+后缀自动机)

    传送门 解题思路 肯定先要建出来广义后缀自动机.刚开始以为是个二分+贪心,写了一下结果\(20\)分.说一下正解,首先显然\(L_0\)具有单调性,是可以二分的.考虑二分后怎样判合法,对于分割序列很容 ...

  4. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  5. bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...

  6. 单调队列优化DP || [NOI2005]瑰丽华尔兹 || BZOJ 1499 || Luogu P2254

    题外话:题目极好,做题体验极差 题面:[NOI2005]瑰丽华尔兹 题解: F[t][i][j]表示第t时刻钢琴位于(i,j)时的最大路程F[t][i][j]=max(F[t-1][i][j],F[t ...

  7. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

  8. 【笔记篇】单调队列优化dp学习笔记&&luogu2569_bzoj1855股票交♂易

    DP颂 DP之神 圣洁美丽 算法光芒照大地 我们怀着 崇高敬意 跪倒在DP神殿里 你的复杂 能让蒟蒻 试图入门却放弃 在你光辉 照耀下面 AC真心不容易 dp大概是最经久不衰 亘古不化的算法了吧. 而 ...

  9. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

随机推荐

  1. 使用Nginx的proxy_cache缓存功能取代Squid

    Nginx从0.7.48版本开始,支持了类似Squid的缓存功能.这个缓存是把URL及相关组合当作Key,用md5编码哈希后保存在硬盘上,所以它可以支持任意URL链接,同时也支持404/301/302 ...

  2. opencv3.3.1 opencv_contribut 3.3.1 git 20180117最新版的在ubuntu1604上的编译

    过程: 1.  git  clone  ...   contribut 2. git  clone  ...  opencv 3.  git  checkout  -b     v3.3.1 4 gi ...

  3. keras----resnet-vgg-xception-inception

    来源: https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/ classi ...

  4. java代码评审内容

    评审内容 u 工具检查 □  Eclipse警告 □  FindBug □  CheckStyle □  Jupiter □  Subclipse 或者Subversive u 代码注释内容(详细参考 ...

  5. js获取和设置属性的方法

    function square(num){    var total = num*num;//局部变量    return total;}var total = 50;//全局变量var number ...

  6. JQuery如何获取按键的unicode编码?

    $("selector").keyup(function(xxx){ var myEvent = xxx; var code = myEvent.keyCode; alert(co ...

  7. [转]XMPP基本概念--节(stanza)

    本文介绍在XMPP通信中最核心的三个XML节(stanza).这些节(stanza)有自己的作用和目标,通过组织不同的节(stanza),就能达到我们各种各样的通信目的. 首先我们来看一段XMPP流. ...

  8. CSS -- 未解之疑

    @.css那些事儿 -- 第9章 反馈表单 自己编写了CSS,可是红框中的横线比下面的要粗.对比作者的代码,发现可能与上面标题h3的height和line-height有关,但是不知道具体是为什么? ...

  9. PowerBuilder -- 条码打印

    # 使用ocx控件 使用微软的MSBCODE9.OCX,但是注册老不成功,需要安装office之后才能注册成功,不知道有没有好的处理方法?? # 使用字体 字体下载:http://download.c ...

  10. Docker基础原理

    前言 Docker是一个开源的软件项目,让用户程序部署在一个相对隔离的环境运行,借此在Linux操作系统上提供一层额外的抽象,以及操作系统层虚拟化的自动管理机制.需要额外指出的是,Docker并不等于 ...