题目描述

输入

第一行两个数n、m,表示矩阵的大小。

接下来n行,每行m列,描述矩阵A。

最后一行两个数L,R。

输出

第一行,输出最小的答案;

样例输入

2 2
0 1
2 1
0 1

样例输出

1


题解

二分+有上下界可行流

题目一眼二分,问题转化为判断是否存在一种填数方式满足行之和的差与列之和的差都不超过mid。

然后原来的和式就可以转化为$|\sum\limits_{i=1}^na_i-\sum\limits_{i=1}^nb_i|\le mid$,即可得到$\sum\limits_{i=1}^nb_i$的范围。

对于每行和每列都得到一个这样的范围,然后这就转化为一个经典的矩阵建图模型:S向行连边,表示每行的和;行向列连边,表示每个数;列向T连边,表示每列的和。

于是就可以使用有源汇有上下界可行流来判断是否有解。

需要注意的一点是$\sum\limits_{i=1}^nb_i$的下界不能是负数,因此减的时候需要判断一下。

#include <queue>
#include <cstdio>
#include <cstring>
#define N 410
#define M 100000
#define inf 1 << 30
using namespace std;
queue<int> q;
int n , m , b , e , a[N][N] , sx[N] , sy[N] , head[N] , to[M] , val[M] , next[M] , cnt , low[N] , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
bool judge(int mid)
{
int i , j , tl , tr , sum = 0;
memset(head , 0 , sizeof(head)) , memset(low , 0 , sizeof(low)) , cnt = 1;
add(n + m + 1 , 0 , inf);
for(i = 1 ; i <= n ; i ++ ) tl = max(sx[i] - mid , 0) , tr = sx[i] + mid , add(0 , i , tr - tl) , low[0] -= tl , low[i] += tl;
for(i = 1 ; i <= m ; i ++ ) tl = max(sy[i] - mid , 0) , tr = sy[i] + mid , add(i + n , n + m + 1 , tr - tl) , low[i + n] -= tl , low[n + m + 1] += tl;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
add(i , j + n , e - b) , low[i] -= b , low[j + n] += b;
for(i = 0 ; i <= n + m + 1 ; i ++ )
{
if(low[i] > 0) add(s , i , low[i]) , sum += low[i];
else add(i , t , -low[i]);
}
while(bfs()) sum -= dinic(s , inf);
return !sum;
}
int main()
{
int i , j , l = 0 , r = 200000 , mid , ans;
scanf("%d%d" , &n , &m) , s = n + m + 2 , t = n + m + 3;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &a[i][j]) , sx[i] += a[i][j] , sy[j] += a[i][j];
scanf("%d%d" , &b , &e);
while(l <= r)
{
mid = (l + r) >> 1;
if(judge(mid)) ans = mid , r = mid - 1;
else l = mid + 1;
}
printf("%d\n" , ans);
return 0;
}

【bzoj2406】矩阵 二分+有上下界可行流的更多相关文章

  1. bzoj 2406 矩阵 —— 有源汇上下界可行流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...

  2. bzoj 2406 矩阵——有源汇上下界可行流

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 二分答案.把 b 的 n 个行作为一排, m 个列作为一排,每行和每列之间连上下界为 ...

  3. bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...

  4. BZOJ 2406 LuoguP4194 矩阵 有上下界可行流

    分析: 这道题乍一看……卧槽这都什么玩意…… 然后发现给了个A矩阵,要求一个可行的B矩阵,使得矩阵C=A-B的每一行的和的绝对值和每一列的和的绝对值的最大值最小…… 好拗口啊…… 什么最大值最小之类的 ...

  5. poj2396 Budget(有源汇上下界可行流)

    [题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...

  6. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  7. 有源汇上下界可行流(POJ2396)

    题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...

  8. ZOJ1994有源汇上下界可行流

    http://fastvj.rainng.com/contest/236779#problem/G Description: n 行 m 列 给你行和 与 列和 然后有Q个限制,表示特定单元格元素大小 ...

  9. [poj] 2396 [zoj] 1994 budget || 有源汇的上下界可行流

    poj原题 zoj原题 //注意zoj最后一行不要多输出空行 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表不同赛区支出的矩阵.组委会曾经开会讨论过各类支出的总和,以及各赛区 ...

随机推荐

  1. python_28_dictionary补充

    #update:合并两个字典,如果有交叉就覆盖更新,没有交叉的就创建 info={ 'stu1101':'Liu Guannan', 'stu1102':'Wang Ruipu', 'stu1103' ...

  2. 【luogu P3609 [USACO17JAN]Hoof, Paper, Scissor蹄子剪刀布】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3609 ### 看着标签什么记搜什么暴力点进来,读完题第一直觉DP? 还真是个\(DP\). 题目所描述的状态 ...

  3. Bootstrap 历练实例 - 折叠(Collapse)插件事件

    事件 下表列出了折叠(Collapse)插件中要用到的事件.这些事件可在函数中当钩子使用. 事件 描述 实例 show.bs.collapse 在调用 show 方法后触发该事件. $('#ident ...

  4. CF873B Balanced Substring (前缀和)

    CF873B Balanced Substring (前缀和) 蛮有意思的一道题,不过还是.....................因为CF评测坏了,没有试过是否可过. 显然求\(\sum[i][0] ...

  5. PAT 乙级 1024

    题目 题目地址:PAT 乙级 1024 题解 模拟题,重点需要考虑到各种不同情况:简单来说一下: 因为输入格式固定,所以把不同的部分分别存储和处理可以在很大程度上简化运算:其中需要考虑最多的就是小数部 ...

  6. 读书笔记-JavaScript面向对象编程(二)

    第5章 原型 5.1 原型属性(所有函数拥有一个prototype属性,默认为空对象) 5.1.1 利用原型添加方法和属性 function Gadget(name,color){ this.name ...

  7. Entrez Direct

    安装 cd ~/bin/bashperl -MNet::FTP -e \'$ftp = new Net::FTP("ftp.ncbi.nlm.nih.gov", Passive = ...

  8. 静态属性property的本质和应用

    一.本质 静态属性property本质就是实现了get,set,delete三种方法 class Foo: @property def AAA(self): print('get的时候运行我啊') @ ...

  9. 动态规划(入门,滚动数组,记录的都是状态):SWUSTACM-1010 魔兽争霸之最后的反击

    题目: 1010: 魔兽争霸之最后的反击                                                                         Time Li ...

  10. Mybatis一个参数判断

    一:List<UserVo> list(@Param("nickName") String nickName); <select id="list&qu ...