3597: [Scoi2014]方伯伯运椰子

Time Limit: 30 Sec  Memory Limit: 64 MB

Submit: 404  Solved: 249
[Submit][Status][Discuss]

Description

Input

第一行包含二个整数N,M

接下来M行代表M条边,表示这个交通网络
每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di
接下来一行包含一条边,表示连接起点的边

Output

一个浮点数,保留二位小数。表示答案,数据保证答案大于0

Sample Input

5 10
1 5 13 13 0 412
2 5 30 18 396 148
1 5 33 31 0 39
4 5 22 4 0 786
4 5 13 32 0 561
4 5 3 48 0 460
2 5 32 47 604 258
5 7 44 37 75 164
5 7 34 50 925 441
6 2 26 38 1000 22
 

Sample Output

103.00

HINT

 

1<=N<=5000

 

0<=M<=3000

 

1<=Ui,Vi<=N+2

 

0<=Ai,Bi<=500

 

0<=Ci<=10000

 

0<=Di<=1000

 

Source

 

 

很显然是分数规划,假设当前二分的答案为ans

那么X - Y >= k*ans 即 Y + k*ans <= X
首先,题目保证了ans > 0,那么不等式成立,当Y < X,也就是能构造出更优的解
然后这张图给人很明显的网络流即视感--尝试构图
一开始整张图是满流的,,我们能做的,是修改一些边的容量,但是又得保证最大流不变
假设扩充了一条边的容量,,那么相邻一定要有条边相应减少--这样找下去一定会出一个环
对于原图的每条边(x,y,a,b,c,d)
从x到y连一条权值为b + d的边,代表容量扩充的费用
从y到x连一条权值为a - d的边,代表容量缩小的费用,该边仅当c > 0时存在
假如图中存在一个负环,那么修改流量时沿着这个环绕一圈,答案一定更优
而且因为容量限制,这个环不能无限绕,,所以是合法的
那么二分答案,对应修改边权,最后用SPFA判断是否存在负环据说这个叫绕圈法??            
——转自 CRZbulabula

//================================================

//sol1
#include<cstdio>
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=1e5+;
struct edge{int v,w,next;}e[N];int tot,head[N];
int n,m,S,q[N],cnt[N];
bool vis[N];
double dis[N];
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].w=z;e[tot].next=head[x];head[x]=tot;
}
inline bool spfa(double plusx){
for(int i=;i<=n;i++) vis[i]=,cnt[i]=,dis[i]=1e9;
unsigned short h=,t=;q[t]=S;dis[S]=;cnt[S]=;
while(h!=t){
int x=q[++h];vis[x]=;
for(int i=head[x];i;i=e[i].next){
if(cnt[e[i].v]>n) return ;
double length=(double)e[i].w+plusx;
if(dis[e[i].v]>dis[x]+length){
dis[e[i].v]=dis[x]+length;
if(!vis[e[i].v]){
vis[e[i].v]=;
cnt[e[i].v]++;
q[++t]=e[i].v;
}
}
}
}
return ;
}
int main(){
double l=,r=,mid,ans;
n=read()+;m=read();S=n-;
for(int i=,a,b,c,d,u,v;i<=m;i++){
u=read();v=read();a=read();b=read();c=read();d=read();
add(u,v,b+d);
if(c) add(v,u,a-d);
if(a-d<) r+=(double)(d-a);
}
while(r-l>=1e-){
mid=(l+r)/2.00;
if(spfa(mid)) ans=mid,l=mid;
else r=mid;
}
printf("%.2lf",ans);
return ;
}

3597: [Scoi2014]方伯伯运椰子[分数规划]的更多相关文章

  1. [bzoj3597][scoi2014]方伯伯运椰子——分数规划,负环

    题解 目标就是 \[Maximize\ \lambda = \frac{X-Y}{k}\] 按照分数规划的一般规律, 构造: \[g(\lambda) = \lambda k + Y - X\] 由于 ...

  2. 洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)

    纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于 ...

  3. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  4. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  5. bzoj 3597: [Scoi2014]方伯伯运椰子

    Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Ou ...

  6. bzoj 3597 [Scoi2014] 方伯伯运椰子 - 费用流 - 二分答案

    题目传送门 传送门 题目大意 给定一个费用流,每条边有一个初始流量$c_i$和单位流量费用$d_i$,增加一条边的1单位的流量需要花费$b_i$的代价而减少一条边的1单位的流量需要花费$a_i$的代价 ...

  7. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  8. BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十 ...

  9. 2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)

    传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h ...

随机推荐

  1. hdu 4990(数学,等比数列求和)

    Reading comprehension Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. shell的各种运行模式?

    交互式shell和非交互式shell,login shell和non-login shell.首先,这是两个不同的维度来划分的,一个是是否交互式,另一个是是否登录.. 交互式模式就是shell等待你的 ...

  3. 使用putty通过证书登录Linux

    refer to: https://www.aliyun.com/jiaocheng/200196.html

  4. 10.1综合强化刷题 Day2 afternoon

    最大值(max) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK有一本书,上面有很多有趣的OI问题.今天LYK看到了这么一道题目: 这里有一个长度为n的 ...

  5. iOS网络交互数据格式解析之json

    作为一种轻量级的数据交换格式,json正在逐步取代xml,成为网络数据的通用格式.从ios5开 始,apple提供了对json的原生支持,但为了兼容以前的ios版本,我们仍然需要使用第三方库来解析常用 ...

  6. Failed to read artifact descriptor for avalon-framework:avalon-framewor

    在工程中,遇到了这个问题,百度了好久并没有满意的解决方案. 网上有一种办法是: 一.修改.m2/repository/avalon-framework/avalon-framework-api/里所有 ...

  7. 2016.6.20 maven更改repository的位置

    默认位置为${userhome}/.m2/repository: 修改位置: 在setting,xml中更改 这个时候再看eclipse的设置,已经自动更改了.因为它是读取setting.xml中的数 ...

  8. VS2010 + C#4.0使用 async + await

    方法一: 安装官方出的Microsoft.Bcl.Async包 最新发布日期为 2014/4/12,版本1.0.168 (不支持VS2010) 1.解决方案-右键-管理解决方案的NuGet程序包 2. ...

  9. Solidworks如何制作动画1

    1点击窗口下方的"运动算例1"可以弹出动画的面板,右击该"运动算例1"还可以对这个动画窗口重命名等操作. 2 我们从最简单的动画开始,假设图示装配体,想要把它从 ...

  10. PHP 变量定义及使用

    php的变量前面必须有$符号,而且是解释型的弱类型语言,定义的时候不需要定义变量值的类型. $str="这是个变量"; 1.输出的时候可以用拼接字符串的方法 如:echo" ...