题目

给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

输入格式

第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有

输出格式

输出一个整数,表示至少要走多少次。

输入样例

1

3 3

0 1 5

5 0 0

1 0 0

输出样例

10

提示

N<=1000,M<=1000.每个格子中财宝数不超过10^6

题解

DAG最小路径覆盖 = 最长反链

反链指最大的点的集合,使集合中的点互不到达

显然反链上的点就是从左下到右上的

一个简单的dp就可以了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,A[maxn][maxn];
LL f[maxn][maxn];
int main(){
int T = read();
while (T--){
n = read(); m = read();
REP(i,n) REP(j,m) A[i][j] = read();
REP(i,n) for (int j = m; j; j--)
f[i][j] = max(f[i - 1][j + 1] + A[i][j],max(f[i - 1][j],f[i][j + 1]));
printf("%lld\n",f[n][1]);
REP(i,n) REP(j,m) f[i][j] = 0;
}
return 0;
}

BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】的更多相关文章

  1. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  2. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  3. 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP

    题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...

  4. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  5. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  6. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  7. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  8. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  9. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

随机推荐

  1. ASP.NET各种技巧

    1.动态添加文件框 前台页面关键部分: <script type="text/javascript"> //添加一个选项 function AddFileCtrol() ...

  2. WPF中对XML的读写

    XML(可扩展标记语言) 定义:用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. 写操作: XmlTextWriter wri ...

  3. 如何在Git提交空文件夹

    1,git clone url 拉取代码至本地 2,mkdir 文件夹名称 在本地创建文件夹 3,cd 文件夹名称 git init 初始化文件夹 vi .gitkeep 创建.gitkeep文件,内 ...

  4. Servlet 的生命周期 及 注意事项 总结

    Servlet的生命周期 图解Servlet的生命周期 生命周期的各个阶段 实例化 :Servlet 容器创建 Servlet 的实例 初始化 :该容器调用init() 方法 请求处理 :如果请求Se ...

  5. vue入门之vue-cli安装项目

    第一步先安装nmp 在node.js的官网下载即可. 第二步 直接安装刚下载好的node.js即可,(这里建议不要修改node.js的安装路径),傻瓜式直接下一步即可 检测是否安装成功: 在cmd的控 ...

  6. js判断是否是大小写,数字等方法

    function isEmail(str){ var regu = "^(([0-9a-zA-Z]+)|([0-9a-zA-Z]+[_.0-9a-zA-Z-]*))@([a-zA-Z0-9- ...

  7. Nginx+proxy_cache图片缓存

    搭建图片缓存机制的原理在于减少数据库的负担并加快静态资源的响应. 步骤: 1. vim /usr/local/nginx/conf/nginx.conf 2. http{     ...     .. ...

  8. 十一、Shell 输入/输出重定向

    Shell 输入/输出重定向 大多数 UNIX 系统命令从你的终端接受输入并将所产生的输出发送回​​到您的终端.一个命令通常从一个叫标准输入的地方读取输入,默认情况下,这恰好是你的终端.同样,一个命令 ...

  9. HTTP-点开浏览器输入网址背后发生的那点事

    前言 Internet最早来源于美国国防部ARPANet,1969年投入运行,到现在已有很长一段路了,各位想要了解发展史可以百度下,这里就不多说了. 现如今当我们想要获取一些资料,首先是打开某个浏览器 ...

  10. Python知识点入门笔记——特色数据类型(字典)

    Python中字典是一些列键 (key) 值 (value) 对组成的,形式如下 {键1:值1,键2:值:2} 每个键值对用冒号隔开,每对之间用逗号隔开 键必须是唯一的,必须是不可变的,如字符串,数字 ...