题目

给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

输入格式

第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有

输出格式

输出一个整数,表示至少要走多少次。

输入样例

1

3 3

0 1 5

5 0 0

1 0 0

输出样例

10

提示

N<=1000,M<=1000.每个格子中财宝数不超过10^6

题解

DAG最小路径覆盖 = 最长反链

反链指最大的点的集合,使集合中的点互不到达

显然反链上的点就是从左下到右上的

一个简单的dp就可以了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,A[maxn][maxn];
LL f[maxn][maxn];
int main(){
int T = read();
while (T--){
n = read(); m = read();
REP(i,n) REP(j,m) A[i][j] = read();
REP(i,n) for (int j = m; j; j--)
f[i][j] = max(f[i - 1][j + 1] + A[i][j],max(f[i - 1][j],f[i][j + 1]));
printf("%lld\n",f[n][1]);
REP(i,n) REP(j,m) f[i][j] = 0;
}
return 0;
}

BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】的更多相关文章

  1. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  2. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  3. 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP

    题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...

  4. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  5. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  6. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  7. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  8. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  9. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

随机推荐

  1. python_25_string

    name="my name is 齐志光qizhiguang" print(name.capitalize())#首字母变大写 print(name.count('i'))#统计字 ...

  2. java基础面试题:try{}里有一个return语句,那么紧跟在这个try后的finally {}里的code会不会被执行,什么时候被执行,在return前还是后?

    package com.swift; public class Try_Catch_Finally_Test { public static void main(String[] args) { /* ...

  3. java 获取request中的请求参数

    1.get 和 post请求方式 (1)request.getParameterNames(); 获取所有参数key后.遍历request.getParameter(key)获取value (2)re ...

  4. (80)zabbix性能优化中的几个建议

    随着zabbix的广泛应用,少数人的zabbix服务器在性能上出现瓶颈,或者在未来会出现性能方面的瓶颈,接下来讨论几个有效并且简单的优化方案. 服务器硬件 想通过几个简单的配置让服务器提高成倍的性能, ...

  5. 二十七、MySQL 复制表

    MySQL 复制表 如果我们需要完全的复制MySQL的数据表,包括表的结构,索引,默认值等. 如果仅仅使用CREATE TABLE ... SELECT 命令,是无法实现的. 本章节将为大家介绍如何完 ...

  6. 在生产环境下实现每天自动备份mysql数据库

    1.描述 我相信很多朋友在工作都都会有这种需求,老板或领导让你每天都要备份mysql数据库,你该如何实现呢,是每天到一定的时间在服务器上敲一遍mysql的备份命令,还是想写个脚本,定时定点的自动备份呢 ...

  7. 24.VUE学习之-变异方法filter与regexp实现评论搜索功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. [译]The Python Tutorial#1. Whetting Your Appetite

    [译]The Python Tutorial#Whetting Your Appetite 1. Whetting Your Appetite 如果你需要使用计算机做很多工作,最终会发现很多任务需要自 ...

  9. for循环+canvas实现黑客帝国矩形阵

    <!DOCTYPE html><html><head> <meta http-equiv="Content-Type" content=& ...

  10. request_resource

    1.全局变量 resource结构体定义如下,指针parent.sibling.child用于构建树状结构. struct resource { resource_size_t start; reso ...