BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】
题目
给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。
输入格式
第一行为正整数T,代表数据组数。
每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有
输出格式
输出一个整数,表示至少要走多少次。
输入样例
1
3 3
0 1 5
5 0 0
1 0 0
输出样例
10
提示
N<=1000,M<=1000.每个格子中财宝数不超过10^6
题解
DAG最小路径覆盖 = 最长反链
反链指最大的点的集合,使集合中的点互不到达
显然反链上的点就是从左下到右上的
一个简单的dp就可以了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,A[maxn][maxn];
LL f[maxn][maxn];
int main(){
int T = read();
while (T--){
n = read(); m = read();
REP(i,n) REP(j,m) A[i][j] = read();
REP(i,n) for (int j = m; j; j--)
f[i][j] = max(f[i - 1][j + 1] + A[i][j],max(f[i - 1][j],f[i][j + 1]));
printf("%lld\n",f[n][1]);
REP(i,n) REP(j,m) f[i][j] = 0;
}
return 0;
}
BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】的更多相关文章
- [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)
题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...
- 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp
题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...
- 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP
题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...
- BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)
Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...
- BZOJ3997 TJOI2015组合数学(动态规划)
copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...
- BZOJ3997: [TJOI2015]组合数学(网络流)
3997: [TJOI2015]组合数学 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 405 Solved: 284[Submit][Status ...
- bzoj3997[TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...
- bzoj3997[TJOI2015]组合数学(求最长反链的dp)
组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...
- bzoj千题计划298:bzoj3997: [TJOI2015]组合数学
http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...
随机推荐
- 使ListView控件中的选择项高亮显示
实现效果: 知识运用: ListView控件的SelectedItems属性 //获取在ListView控件中被选中数据项的集合 public ListView.SelectedListViewIte ...
- jquery iCheck 插件
1 官网:http://www.bootcss.com/p/icheck/#download 2 博客:https://www.cnblogs.com/xcsn/p/6307610.html http ...
- pandas 代码
def get_train_data(): df = pd.read_csv('data/train.csv', encoding='utf_8') # df1 = pd.read_csv('data ...
- RabbitMQ使用教程(五)如何保证队列里的消息99.99%被消费?
1. 前情回顾 RabbitMQ使用教程(一)RabbitMQ环境安装配置及Hello World示例 RabbitMQ使用教程(二)RabbitMQ用户管理,角色管理及权限设置 RabbitMQ使用 ...
- 32-3题:LeetCode103. Binary Tree Zigzag Level Order Traversal锯齿形层次遍历/之字形打印二叉树
题目 给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行). 例如: 给定二叉树 [3,9,20,null,null,15,7], 3 ...
- 37.VUE学习之-表单的综合运用
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- CCPC 2016-2017, Finals
A. HDU 5999 The Third Cup is Free 简单模拟. B. HDU 6000 Wash n 件衣服, m 个洗衣机,k 个烘干机.每个洗衣机和烘干机需要不同的时间.问 n 件 ...
- V4L2学习(五)VIVI虚拟摄像头驱动
概述 前面简单分析了内核中虚拟摄像头驱动 vivi 的框架与实现,本文参考 vivi 来写一个虚拟摄像头驱动,查询.设置视频格式相对简单,难点在于 vb2_buf 的处理过程. 数据采集流程分析 在我 ...
- CCPC_1003
这个题可以暴力的哟,直接暴力的哟 不用做什么订立的哟 不需要特别判断的哟 去死吧!!!愚蠢的我! #include<bits/stdc++.h> using namespace std; ...
- (ADO.NET)SqlCommand参数化查询
string strcon = "Persist Security Info=False;User id=sa;pwd=lovemary;database=student;server=(l ...