ICPC 2016 China Final J. Mr.Panda and TubeMaster【最大费用最大流】
有一种限制下界强制选的,但是也可以不用
把每个格点拆成两个,一个连s一个连t,对于不是必选的连中间连流量1费用0边表示不选,然后黑白染色,黑点连横着白点连竖着,边权就是这条水管的权值,然后跑最大费用最大流
然后判断不可能就是不满流
并且这样可以满足每个被选的格子都在一个环上,因为他一定唯一对应另一个唯一的点,也就是出入度都是1
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=2005;
int T,n,m,k,cas,vh[N][N],vs[N][N],idb[N][N],idw[N][N],tot,s,t,h[N],cnt,fr[N],dis[N],ans,sm;
bool v[N],a[N][N];
struct qwe
{
int ne,no,to,va,c;
}e[N*N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
for(int i=s;i<=t;i++)
dis[i]=-1e9;
queue<int>q;
q.push(s);
v[s]=1;
dis[s]=0;
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]<dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=-1e9;
}
void mcf()
{
int x=1e9;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
sm+=x;
for(int i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=e[i].c*x;
}
}
int main()
{
T=read();
while(T--)
{
memset(h,0,sizeof(h));
memset(a,0,sizeof(a));
cnt=1,tot=0,ans=0,sm=0;
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<m;j++)
vh[i][j]=read();
for(int i=1;i<n;i++)
for(int j=1;j<=m;j++)
vs[i][j]=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
idb[i][j]=++tot,idw[i][j]=++tot;
s=0,t=tot+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if((i+j)&1)
{
if(j+1<=m)
ins(idb[i][j],idw[i][j+1],1,vh[i][j]);
if(j-1>=1)
ins(idb[i][j],idw[i][j-1],1,vh[i][j-1]);
}
else
{
if(i+1<=n)
ins(idb[i][j],idw[i+1][j],1,vs[i][j]);
if(i+1>=1)
ins(idb[i][j],idw[i-1][j],1,vs[i-1][j]);
}
}
k=read();
for(int i=1;i<=k;i++)
{
int x=read(),y=read();
a[x][y]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
ins(s,idb[i][j],1,0);
ins(idw[i][j],t,1,0);
if(!a[i][j])
ins(idb[i][j],idw[i][j],1,0);
}
while(spfa())
mcf();
if(sm<n*m)
printf("Case #%d: Impossible\n",++cas);
else
printf("Case #%d: %d\n",++cas,ans);
}
return 0;
}
/*
2
4 4
0 0 -1
0 1 0
0 -1 -1
0 1 0
1 0 1 0
-1 -1 0 0
1 1 -1 -1
1
3 3
2 3
0 0
0 0
0 0 0
2
1 1
2 3
*/
ICPC 2016 China Final J. Mr.Panda and TubeMaster【最大费用最大流】的更多相关文章
- 【费用流】 ICPC 2016 China Final J. Mr.Panda and TubeMaster
表示“必须选”的模型 题目大意 题目分析 一个格子有四种方式看上去很难处理.将横竖两个方向分开考虑,会发现:因为收益只与相邻格子是否连通有关,所以可以将一个格子拆成表示横竖两个方向的,互相独立的点. ...
- China Final J - Mr.Panda and TubeMaster
和一般的管道不同 不能类似“无限之环”或者“弯弯国”的建图,因为这两个题都是某些位置必须有,或者必须没有 但是本题可以有的位置随意,不能限制某个位置要么流2,要么流0,(实际上可能流了1过去) 所以建 ...
- J - Mr.Panda and TubeMaster
题解 我们可以把每个格子拆成两个点,一个表示横向的,一个表示纵向的,相邻的格子横向和纵向连边. 如果直接按照题意做的话,我们应当在横向和纵向的点之间连边,有限制的边设下界为1,然后跑可行流. 或者考虑 ...
- Gym101194J Mr.Panda and TubeMaster 二分图、费用流
传送门 看到这张图,是一个网格图,而且有回路限制,不难想到黑白染色. 一般来说我们对一张图黑白染色之后都是黑色点向白色点连边,但是这道题往这边想似乎就想不出建图方法了,因为"一个格子强制流满 ...
- 2016 ACM-ICPC China Finals #F Mr. Panda and Fantastic Beasts
题目链接$\newcommand{\LCP}{\mathrm{LCP}}\newcommand{\suf}{\mathrm{suf}}$ 题意 给定 $n$ 个字符串 $s_1, s_2, \dots ...
- 2016EC Final F.Mr. Panda and Fantastic Beasts
题目大意 \(T(1\leq T\leq42)\)组数据,给定\(n(2\leq n\leq 50000)\)个字符串\(S_{i}(n\leq\sum_{i=1}^{n}S_{i}\leq 2500 ...
- 2016 China Final E - Bet
/************************************************************************* > File Name: E.cpp > ...
- 2016 China Final H - Great Cells
/************************************************************************* > File Name: H.cpp > ...
- 2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定理
2018 China Collegiate Programming Contest Final (CCPC-Final 2018)-K - Mr. Panda and Kakin-中国剩余定理+同余定 ...
随机推荐
- iOS app submission : missing 64-bit support
- ES6中的class 与prototype
一.定义构造函数 在以前的js中,生成一个对象实例,需要先定义构造函数,然后通过prototype 的方式来添加方法,在生成实例: function Person(){ this.name = &qu ...
- 如何在Mac的Finder中显示/usr、/tmp、/var等隐藏目录
原文链接: http://blog.csdn.net/yhawaii/article/details/7435918 Finder中默认是不显示/usr./tmp./var等隐藏目录的,通过在终端中输 ...
- android程序的真正入口
代码出自MtAndroid 3.1.2完全开发手册,适用于Android平台. 概述 android程序的真正入口是Application类的onCreate方法.它的继承关系如下所示: java.l ...
- 分享知识-快乐自己:Oracle基本语法(创建:表空间、用户、授权、约束等)使用指南
Oracle12c 与 Oracle11g 创建用户时有差别.Oracle12C默认为 CDB模式 这时创建用户的时候需要加上 c## 开头:例如:c##MLQ. --说明--需求:创建表空间(MLQ ...
- unreal network
frame move buffer: save move position recive server sync:All moves earlier than the ClientAdjustPosi ...
- linux命令学习:echo详解,格式化输出,不换行输出
shell脚本不换行刷新数据 #!/bin/bash ] do a=$(ifconfig eth0 | grep 'RX pac' | awk '{print $2}' | awk -F: '{pri ...
- 3D Flip
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- linux 下文件恢复工具extundelete介绍
下载 http://extundelete.sourceforge.net/ bunzip2 extundelete-0.2.0.tar.bz2 tar xvf extundelete-0.2 ...
- 洛谷P1474货币系统——背包方案计数
题目:https://www.luogu.org/problemnew/show/P1474 完全背包,注意方案计数的方法. 代码如下: #include<iostream> #inclu ...