codevs 1086 栈(Catalan数)
题目描述 Description
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作,
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。(原始状态如上图所示) 。
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
输入描述 Input Description
输入文件只含一个整数n(1≤n≤18)
输出描述 Output Description
输出文件只有一行,即可能输出序列的总数目
样例输入 Sample Input
3
样例输出 Sample Output
5
思路:
求出栈次序是Catalan数的一个重要应用
首先,我们设f(n)=序列个数为n的出栈序列种数。我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。
Catalan数的相关知识:
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
long long f=;
for(int i=;i<=n;i++)
f=f*(i*-)/(i+);
cout<<f;
}
codevs 1086 栈(Catalan数)的更多相关文章
- 卡特兰数 codevs 1086 栈
1086 栈 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description ...
- AC日记——codevs 1086 栈 (卡特兰数)
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- codevs 1086 栈 2003年NOIP全国联赛普及组
题目描述 Description 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). ...
- [Catalan数]1086 栈、3112 二叉树计数、3134 Circle
1086 栈 2003年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 栈是计算机中 ...
- Catalan数 && 【NOIP2003】出栈序列统计
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...
- Catalan数,括号序列和栈
全是入门的一些东西.基本全是从别处抄的. 栈: 支持单端插入删除的线性容器. 也就是说,仅允许在其一端加入一个新元素或删除一个元素. 允许操作的一端也叫栈顶,不允许操作的一端也叫栈底. 数个箱子相叠就 ...
- luogu P1044 火车进出栈问题(Catalan数)
Catalan数就是魔法 火车进出栈问题即: 一个栈(无穷大)的进栈序列为 1,2,3,4,...,n 求有多少个不同的出栈序列? 将问题进行抽象, 假设'+'代表进栈, 则有'-'代表出栈 那么如果 ...
- Catalan数应用整理
应用一: codevs 3112 二叉树计数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 一个有n个结点的二叉树总共有 ...
- NOIP2003pj栈[卡特兰数]
题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何 ...
随机推荐
- Java for LeetCode 128 Longest Consecutive Sequence
Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...
- Git core objects
Git core objects Core objects in git blob object tree object commit object Git low level commands gi ...
- 20145239 杜文超《Java程序设计》课程总结
<每周读书笔记链接汇总> 第一周读书笔记:http://www.cnblogs.com/dwc929210354/p/5247666.html 第二周读书笔记:http://www.cnb ...
- EntityFramework codefirst
一.Entity Framework 迁移命令(get-help EntityFramework) Enable-Migrations 启用迁移 Add-Migration 为挂起的Model变化添加 ...
- ManualResetEvent使用
1.定义 MSDN定义: 通知一个或多个正在等待的线程已发生事件.此类不能被继承. 详细说明: ManualResetEvent 允许线程通过发信号互相通信.通常,此通信涉及一个线程在其他线程进行之前 ...
- oracle删除重复数据只保留一条
-- 如表role_user的数据 ROLEID USERID -- 删除相同记录只剩下一条记录 根据两个字段查询重复数据 (roleid,userid) ) 删除重复数据只保留一条 delete f ...
- access 驱动在win64位出现问题
如果是调试的话,将应用程序池的 启动win32应用程序池 为 true
- 使用TortoiseGit同步代码到github远程仓库
1.clone github上的代码仓库的URL 可以用HTTPS,SSH, or Subversion 2.同步push 到远程仓库时 要用 SSH地址,同生成SSH private key ,在g ...
- WebP探索
不同场景下WebP的使用方案总结: App:Android4.0以上提供原生支持,其他版本使用官方提供的解析库(Android.iOS): 浏览器:JS能力检测,对支持 WebP 的用户输出 ...
- loading bar
上面的loading条,想到的办法是用两个半圆覆盖实现,结果也就这么做了,可是明明一个圆就可以的,哎智商堪忧... <!DOCTYPE html> <html lang=" ...