传送门

这图可以说是非常形象了2333

模拟赛的时候打了个表发现为一条链的时候答案是\(2^{n-2}\)竟然顺便过了第一个点

然后之后订正的时候强联通分量打错了调了一个上午

首先不难发现我们可以去掉所有在环上的边,那么就变成了一个森林,不同的树之间不可能有连边,那么只要所有树的答案乘起来就好了,只要在每一棵树内部树形\(dp\)即可

考虑对于\(u\),它的子树如何统计答案

我们强制子树必须得向外连一条边(显然最多只有一条),然后往上统计

如果子树里没有向外连边,每一棵子树的答案乘起来

如果向外连边的话,那么要把子树内的边两两匹配上。设\(g_i\)为\(i\)个点互相两两匹配的方案数,那么递推式为$$g_i=g_{i-1}+(i-1)\times g_{i-2}$$

边界条件为\(g_0=g_1=1\)

上面的意思是,如果第\(i\)个不连边,那么方案数就是\(g_{i-1}\),如果连边,那么有\(i-1\)种连法,连完后这两个点都不能再连边了

那么要把子树内的边两两匹配,如果当前节点是根,那么就是子树内向外连的每条链互相匹配,记\(tot\)为当前节点儿子个数,那么就是\(g_{tot}\),否则链还可以继续往上连,那么是\(g_{tot+1}\),可以考虑为把当前节点也加入匹配的队列,如果有链和它连上就代表这条链要继续向外连

然后记得开始的时候判一下是不是仙人掌就好了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
inline void swap(R int &x,R int &y){x^=y^=x^=y;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
void write(int x){if(x>9)write(x/10);putchar(x%10+48);}
void writeln(R int x){write(x);putchar('\n');}
const int N=1e6+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct eg{int v,nx,w;}e[N<<1];int head[N],tot=1;
inline void add_edge(R int u,R int v){e[++tot]={v,head[u]},head[u]=tot;}
int dfn[N],col[N],vis[N],f[N],g[N],st[N],low[N];
int n,m,cnt,top,tim,u,v,ans;bool qwq;
inline void clr(){fp(i,1,n)dfn[i]=col[i]=f[i]=vis[i]=head[i]=0;tim=cnt=top=qwq=0,tot=ans=1;}
void tarjan(int u,int fa){
bool flag=0;st[++top]=u;
dfn[u]=low[u]=++tim;
go(u)if(v!=fa){
if(!dfn[v]){
tarjan(v,u);cmin(low[u],low[v]);
if(low[v]<dfn[u]){
if(flag)return qwq=1,void();
flag=1;
}
}else{
cmin(low[u],dfn[v]);
if(low[v]<dfn[u]){
if(flag)return qwq=1,void();
flag=1;
}
}
}
if(low[u]==dfn[u])do{col[st[top--]]=u;}while(st[top+1]!=u);
}
void dp(int u,int fa){
vis[u]=f[u]=1;int tot=0;
go(u)if(v!=fa&&!e[i].w){
dp(v,u),++tot;
f[u]=mul(f[u],f[v]);
}
if(tot)f[u]=mul(f[u],fa?g[tot+1]:g[tot]);
}
int main(){
// freopen("testdata.in","r",stdin);
g[0]=g[1]=1;fp(i,2,N-5)g[i]=add(g[i-1],mul(i-1,g[i-2]));
int T=read();
while(T--){
n=read(),m=read(),clr();
fp(i,1,m)u=read(),v=read(),add_edge(u,v),add_edge(v,u);
tarjan(1,0);
if(qwq){writeln(0);continue;}
fp(i,2,tot)e[i].w=(col[e[i].v]==col[e[i^1].v]);
fp(i,1,n)if(!vis[i])dp(i,0),ans=mul(ans,f[i]);
writeln(ans);
}return 0;
}

uoj#290. 【ZJOI2017】仙人掌(数数+仙人掌+树形dp)的更多相关文章

  1. UOJ#290. 【ZJOI2017】仙人掌 仙人掌,Tarjan,计数,动态规划,树形dp,递推

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ290.html 题解 真是一道好题! 首先,如果不是仙人掌直接输出 0 . 否则,显然先把环上的边删光. ...

  2. codeforces 456 D. A Lot of Games(字典数+博弈+思维+树形dp)

    题目链接:http://codeforces.com/contest/456/problem/D 题意:给n个字符串.进行k次游戏.每局开始,字符串为空串,然后两人轮流在末尾追加字符,保证新的字符串为 ...

  3. Codeforces 1118 F2. Tree Cutting (Hard Version) 优先队列+树形dp

    题目要求将树分为k个部分,并且每种颜色恰好在同一个部分内,问有多少种方案. 第一步显然我们需要知道哪些点一定是要在一个部分内的,也就是说要求每一个最小的将所有颜色i的点连通的子树. 这一步我们可以将所 ...

  4. [BZOJ4784][ZJOI2017]仙人掌(树形DP)

    4784: [Zjoi2017]仙人掌 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 312  Solved: 181[Submit][Status] ...

  5. LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】

    题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...

  6. 2019.02.07 bzoj4784: [Zjoi2017]仙人掌(仙人掌+树形dp)

    传送门 题意:给一个无向连通图,问给它加边形成仙人掌的方案数. 思路: 先考虑给一棵树加边形成仙人掌的方案数. 这个显然可以做树形dp. fif_ifi​表示把iii为根的子树加边形成仙人掌的方案数. ...

  7. bzoj 4784: [Zjoi2017]仙人掌【tarjan+树形dp】

    其实挺简单的但是没想出来---- 首先判断无解情况,即,一开始的图就不是仙人掌,使用tarjan判断如果一个点dfs下去有超过一个点比他早,则说明存在非简单环. 然后考虑dp,显然原图中已经属于某个简 ...

  8. 【NOI P模拟赛】仙人掌(圆方树,树形DP)

    题面 n n n 个点, m m m 条边. 1 ≤ n ≤ 1 0 5 , n − 1 ≤ m ≤ 2 × 1 0 5 1\leq n\leq 10^5,n-1\leq m\leq 2\times1 ...

  9. 树形DP(统计直径的条数 HDU3534)

    分析:首先树形dp(dfs计算出每个点为根节点的子树的最长距离和次长距离),然后找出L=dis[u][0]+dis[u][1]最长的那个点u,然后在以u为根节点dfs,统计长度为L的条数:具体做法:把 ...

随机推荐

  1. 爬虫前戏(回顾掌握) -- HTTP和HTTPS

    一.HTTP协议 1.官方概念: HTTP协议是Hyper Text Transfer Protocol(超文本传输协议)的缩写,是用于从万维网(WWW:World Wide Web )服务器传输超文 ...

  2. git功能速查

    http://gitbook.liuhui998.com/index.html git rebase:在本地变基.将本地所有的修改应用到另一个分支上 git merge:在本地合并分支 git bra ...

  3. Lua调用C,C++函数案例

    该程序主要是C++与Lua之间的相互调用示例.执行内容:(1)新建一个lua_State(2)打开常用库,如io,os,table,string等(3)注册C函数(4)导入程序所在目录下所有*.lua ...

  4. jQuery+CSS3实现弯曲文字路径

    jQuery+CSS3实现弯曲文字路径,jQuery,CSS3特效,弯曲文字,文字,文字特效,环形文字. 源码下载:http://www.huiyi8.com/sc/6281.html

  5. legend2---开发日志15(功能需求明确,设计好类和结构的好处是)

    legend2---开发日志15(功能需求明确,设计好类和结构的好处是) 一.总结 一句话总结: 极快简化编程,节约大量时间 1.多个类型的物品,比如商店和寻宝的丹药,装备,特性书,英雄石等等 应该怎 ...

  6. 【HDU2050】折线分割平面

    Position Solution 2×n^2-n+1 证明见分割问题 Code // This file is made by YJinpeng,created by XuYike's black ...

  7. linux命令学习笔记(24):Linux文件类型与扩展名

    Linux文件类型和Linux文件的文件名所代表的意义是两个不同的概念.我们通过一般应用程序 而创建的比如file.txt.file.tar.gz ,这些文件虽然要用不同的程序来打开,但放在Linux ...

  8. 国内镜像pip

    建议非清华大学校内的使用这个镜像: http://e.pypi.python.org/simple(这也是一个http://pypi.v2ex.com/simple),清华校内的就使用这个:http: ...

  9. 【Matlab】常用函数

    1.取整函数 ceil(x)返回不小于x的最小整数值.floor(x)返回不大于x的最大整数值.round(x)返回x的四舍五入整数值.

  10. MongoDB4.0.0的安装配置—windows

    一.背景 由于要学习MongoDB,所以就下载了最新的MongoDB 的Community Server版的4.0.0版本.可能是新的版本的缘故,在安装配置上与MongoDB3有许多不同,而且在3中的 ...