P3746 [六省联考2017]组合数问题

\(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{i-1,j}\)

\(dp_{i,0},dp_{i,1},dp_{i,2}.....dp_{i,k-1}\) \(\Longrightarrow\) \(dp_{i+1,0},dp_{i+1,1},dp_{i+1,2}.....dp_{i+1,k-1}\)

仔细想想,你能构造出矩阵的

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL;
const LL maxn=100;
inline LL Read(){
LL x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
struct mat{
LL m[maxn][maxn];
}rt,a,b;
LL n,MOD,K,r;
inline mat Mul(const mat &x,const mat &y){
mat res;
memset(res.m,0,sizeof(res.m));
for(LL i=0;i<=K-1;++i)
for(LL j=0;j<=K-1;++j)
for(LL k=0;k<=K-1;++k)
res.m[i][j]=(res.m[i][j]+x.m[i][k]*y.m[k][j]%MOD)%MOD;
return res;
}
inline void Pow(LL mi){
while(mi){
if(mi&1)
a=Mul(a,b);
b=Mul(b,b);
mi>>=1;
}
}
int main(){
n=Read(),MOD=Read(),K=Read(),r=Read();
for(LL i=0;i<=K-2;++i)
b.m[i][i]=b.m[i][i+1]=1;
++b.m[K-1][0],++b.m[K-1][K-1];
for(LL i=0;i<=K-1;++i)
a.m[i][i]=1;
Pow(n*K);
rt.m[0][0]=1;
rt=Mul(rt,a);
printf("%lld",rt.m[0][r]);
return 0;
}

P3746 [六省联考2017]组合数问题的更多相关文章

  1. 洛谷P3746 [六省联考2017]组合数问题

    题目描述 组合数 C_n^mCnm​ 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...

  2. [BZOJ4870][六省联考2017]组合数问题(组合数动规)

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Statu ...

  3. P3746 【[六省联考2017]组合数问题】

    题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...

  4. bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...

  5. 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学

    正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...

  6. BZOJ4870 [六省联考2017] 组合数问题 【快速幂】

    题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...

  7. [六省联考2017]组合数问题 (矩阵优化$dp$)

    题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...

  8. 六省联考2017 Day1

    目录 2018.3.18 Test T1 BZOJ.4868.[六省联考2017]期末考试 T2 T3 BZOJ.4870.[六省联考2017]组合数问题(DP 矩阵快速幂) 总结 考试代码 T1 T ...

  9. 【BZOJ4873】[六省联考2017]寿司餐厅(网络流)

    [BZOJ4873][六省联考2017]寿司餐厅(网络流) 题面 BZOJ 洛谷 题解 很有意思的题目 首先看到答案的计算方法,就很明显的感觉到是一个最大权闭合子图. 然后只需要考虑怎么构图就行了. ...

随机推荐

  1. 某音乐类App评论相关API的分析及SQL注入尝试

    关键字:APIfen.工具使用.sql注入 涉及工具/包:Fiddler.Burpsuite.Js2Py.Closure Compiler.selenium.phantomjs.sqlmap 摘要: ...

  2. 防止sql注入和跨站脚本攻击,跨站请求伪造以及一句话木马的学习记录

    以下是来自精通脚本黑客的学习记录 防止以上漏洞的最好的方式 一对用户的输入进行编码,对用户输入进行编码,然后存入数据库,取出时解码成utf-8 二对用户的输入进行过滤,过滤jscript,javasc ...

  3. Windows下批处理命令启动项目bat脚本

    文件env.cfg #server name SERVER_NAME=ActivitiService #JDK Home JDK_HOME= #Main MAIN_CLASS=com.nbtv.com ...

  4. C++ 关于类与对象在虚函数表上唯一性问题 浅析

    [摘要] 非常多教材上都有介绍到虚指针.虚函数与虚函数表.有的说类对象共享一个虚函数表,有的说,一个类对象拥有一个虚函数表.还有的说,不管用户声明了多少个类对象,可是,这个VTABLE虚函数表仅仅有一 ...

  5. Ant Design 3.0 使用案例

    代码地址如下:http://www.demodashi.com/demo/12309.html 本文适合对象 有过React使用经验. 有过webpack使用经验. 了解node. DEMO使用方式 ...

  6. LOL英雄联盟代打外挂程序-java实现

    相信非常多程序员都玩游戏,比方LOL :有时候想打人机对战(玩家对战小心别人举报你! ),纯属为了拿经验和金币,而本身不想玩,但假设玩家不操作.那么非常快就会被系统觉得是挂机,从而得不到经验和金币.所 ...

  7. MySQL联表更新插入数据

    Error: DELETE FROM t_23andme_addref WHERE id IN (  SELECT min(id)  FROM t_23andme_addref   GROUP BY ...

  8. git分支处理

    查看分支:git branch 创建分支:git branch <name> 切换分支:git checkout <name> 创建+切换分支:git checkout -b ...

  9. android shareSDK 微博分享案例

    android shareSDK 微博分享案例 ShareSDK APP_KEY 219b1121fc68 腾讯微博 key 801517904 secret bfba83ae253c8f38dabe ...

  10. 认识XmlReader

    认识XmlReader   摘要 XmlReader类是组成.NET的关键技术之一,极大地方便了开发人员对Xml的操作.通过本文您将对XmlReader有一个很好的认识,并将其应用到实际开发中. 目录 ...