POJ 1741 Tree (树的分治,树的重心)
题意:给一棵树,n个节点,给定一个数k,求任意满足dist(a,b)<=k的点对的数量。
思路:
这道题的思路比较简单,但是细节很多。
此题可以用分治法,如何分治?
(1)如果path(a,b)不经过根,那么肯定在根的某棵子树下,递归解决。
(2)如果path(a,b)经过根,那么肯定在根的不同子树下,处理它。
怎样处理?如果知道了每棵子树中的节点到根的距离,暂且将每棵子树的节点分到每个独立的桶里。每个节点都可以和其他桶里的点组成点对,只要距离<=k的话就满足要求了。逐个算可能超时了,用个简单点的方法。在这里我们不需要知道节点是谁,只需要知道距离,所以将所有节点到根的距离取出来,排个序,用两个指针在线性复杂度就可以解决本节点下的点对统计了。
但是如何去重?因为所有子树中的节点全部都混着排序了,估计会有挺多对是在同棵子树下的节点被统计到了,这暂时不需要,这是要递归解决的,那么就要去掉这些同棵树下的点对。计算的方法都是一样的。
但是还有一种情况让你TLE,就是单链时的情况,若每次以孩子来递归下去解决,可能就不行了。但是可以发现到,计算这棵子树时,完全也不用经过根,那么不妨直接找出这棵子树中的重心作为根来解决这个子问题。复杂度主要是在排序的地方,用了找重心的方法可以保证每个点最多被排序2*logn次,所以总复杂度为O(nlog2n)。
如下图,红色点为重心,红色的线为虚拟边。左图是原树,右图是分治的过程。就像是每个重心隔开了一些子树一样。
有论文可以看。
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define pii pair<int,int>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int N=;
int n, k, root, edge_cnt, ans, num, big, vis[N];
vector<int> vect[N];
struct node
{
int from,to,len;
node(){};
node(int from,int to,int len):from(from),to(to),len (len){};
}edge[N*]; void add_edge(int from,int to,int len)
{
edge[edge_cnt]=node(from,to,len);
vect[from].push_back(edge_cnt++);
} int get_size(int t,int far)
{
int cnt=;
for(int i=; i<vect[t].size(); i++)
{
node e=edge[vect[t][i]];
if(e.to!=far&&!vis[e.to]) cnt+=get_size(e.to, t);
}
return cnt;
} int get_root(int t,int far) //求重心:root。
{
int cur=, sum=;
for(int i=; i<vect[t].size(); i++)
{
node e=edge[vect[t][i]];
if( e.to!=far && !vis[e.to] )
{
int tmp=get_root(e.to, t);
sum+=tmp;
cur=max(cur, tmp);
}
}
cur=max(cur, num-sum);
if(cur<big) big=cur, root=t; //更新root
return sum;
} vector<int> seq;
void get_all(int t,int far,int len) //获取子树t的所有节点
{
seq.push_back(len);
if(len>=k) return ; //剪枝
for(int i=; i<vect[t].size(); i++)
{
node e=edge[vect[t][i]];
if( !vis[e.to] && e.to!=far ) get_all(e.to, t, len+e.len);
}
} int cal(int t,int len) //计算子树t的内部点对。
{
seq.clear();
get_all(t, , len); //将以t为根的整棵子树的len装进去seq
sort(seq.begin(), seq.end());
int tmp=, L=, R=seq.size()-;
while( L<R )
{
if( seq[L]+seq[R]<=k ) tmp+=R-L,L++;
else R--;
}
return tmp;
} void solve(int t) //主函数
{
vis[t]=;
ans+=cal(t, ); //计算子树t的答案
for(int i=; i<vect[t].size(); i++)
{
node e=edge[vect[t][i]];
if( !vis[e.to] )
{
ans-=cal(e.to, e.len); //去重
big=INF;root=-;num=get_size(e.to, -); //用于找重心
get_root(e.to, -);
solve(root);
}
}
} void init()
{
for(int i=; i<=n; i++)vect[i].clear();
memset(vis, , sizeof(vis));
ans=edge_cnt=;
} int main()
{
//freopen("input.txt", "r", stdin);
int a,b,c;
while( scanf("%d%d",&n,&k), n+k )
{
init();
for(int i=; i<n; i++)
{
scanf("%d%d%d",&a,&b,&c);
add_edge(a,b,c);
add_edge(b,a,c);
}
num=n;big=INF;root=-; //找重心用的。
get_root(,-); //找重心
solve( root );
printf("%d\n", ans);
}
return ;
}
AC代码
POJ 1741 Tree (树的分治,树的重心)的更多相关文章
- POJ 1741 Tree 树上点分治
题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...
- POJ 1741 Tree (点分治)
Tree Time Limit: 1000MS Memory ...
- poj 1741 Tree(点分治)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15548 Accepted: 5054 Description ...
- poj 1741 Tree(树的点分治)
poj 1741 Tree(树的点分治) 给出一个n个结点的树和一个整数k,问有多少个距离不超过k的点对. 首先对于一个树中的点对,要么经过根结点,要么不经过.所以我们可以把经过根节点的符合点对统计出 ...
- POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量
POJ 1741. Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 34141 Accepted: 11420 ...
- POJ 1741 Tree 求树上路径小于k的点对个数)
POJ 174 ...
- POJ 1741 Tree (树分治入门)
Tree Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8554 Accepted: 2545 Description ...
- POJ 1741 Tree 树的分治
原题链接:http://poj.org/problem?id=1741 题意: 给你棵树,询问有多少点对,使得这条路径上的权值和小于K 题解: 就..大约就是树的分治 代码: #include< ...
- POJ 1741 Tree 树形DP(分治)
链接:id=1741">http://poj.org/problem?id=1741 题意:给出一棵树,节点数为N(N<=10000),给出N-1条边的两点和权值,给出数值k,问 ...
- POJ 1741 Tree(点分治点对<=k)
Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...
随机推荐
- 爬虫库之BeautifulSoup学习(三)
遍历文档树: 1.查找子节点 .contents tag的.content属性可以将tag的子节点以列表的方式输出. print soup.body.contents print type(soup. ...
- Tomcat自定义classLoader加密解密
class很好反编译,所以需要对class文件先进行加密,然后使用自己的classloader进行解密并加载. [步骤] 大概分两步: 1.对class文件进行加密 2.写解密class文件并加载的c ...
- ecplise常见的一些问题
修改注释的字体,默认的字体太小了.
- 5-1条件运算符 & 5-2
三目运算符 新建类: ConditionDemo 用三目运算符: package com.imooc.operator; public class ConditionDemo { public sta ...
- 使用JavaScript选择GridView行的方法汇总
一行: e.Row.Attributes["onclick"] = ClientScript.GetPostBackClientHyperlink(this.gvUsers, &q ...
- Codeforces Round #375 (Div. 2)【A,B【模拟】,D【DFS】】
PS_B:阿洗吧!B题卧槽数组开了250... PS_D:D题主要挂在了50*50口算得了250,数组开小,然后一开始还错了.= =哎,以后对于数据范围还是注意一点: 卧槽,这场可真二百五了... A ...
- 微信API接口文档
传送门
- Bloomberg 的一些功能
FFLO: 查看ETF流动,注意在View点击Contries后选择Asia,查看亚洲流动. 随后对感兴趣的国家点击查看具体股票的流动 关闭Launchpad View之后再次打开: BLP 修改La ...
- Some JPR highlights (JPR 2019 March)
Journal Name:Journal of Proteome Research Issue:2019 March Shared by: Weining Zhao 1. Acetylome: ...
- Django框架知识2
1.Http消息格式: 1.请求(request): 请求方法 请求路径 HTTP/1.1\r\n k1:v1\r\n k2:v2\r\n \r\n 请求体正文 2.响应(response) HTTP ...