Acyclic Organic Compounds
题意:
给一以1为根的字符树,给出每个节点的字符与权值,记 $diff_{x}$ 为从 $x$ 出发向下走,能走到多少不同的字符串,求问最大的
$diff_{x} + c_{x}$,并求有多少个 $diff_{x} + c_{x}$。
解法:
考虑$dfs$,从下到上启发式合并 $Trie$ 树,效率 $O(nlogn)$。
#include <iostream>
#include <cstdio>
#include <cstring> #define N 300010 using namespace std; struct edge
{
int x,to;
}E[N<<]; struct node
{
node *ch[];
int siz; node* init()
{
siz=;
memset(ch,,sizeof(ch));
return this;
};
}spT[N<<],*root[N]; int n,m,totn,totE,ans,ansv;
int fa[N],g[N],c[N];
char S[N]; void addedge(int x,int y)
{
E[++totE] = (edge){y,g[x]}; g[x]=totE;
E[++totE] = (edge){x,g[y]}; g[y]=totE;
} #define p E[i].x node* merge(node *p1,node *p2)
{
if(p1->siz < p2->siz) swap(p1,p2);
for(int t=;t<;t++)
if(p2->ch[t])
{
if(!p1->ch[t]) p1->ch[t]=p2->ch[t];
else p1->ch[t] = merge(p1->ch[t], p2->ch[t]);
}
p1->siz=;
for(int t=;t<;t++)
if(p1->ch[t]) p1->siz+=p1->ch[t]->siz;
return p1;
} void dfs(int x)
{
int tmp=S[x]-'a';
root[x]=spT[++totn].init();
root[x]->ch[tmp]=spT[++totn].init();
for(int i=g[x];i;i=E[i].to)
if(p!=fa[x])
{
fa[p]=x;
dfs(p);
}
for(int i=g[x];i;i=E[i].to)
if(p!=fa[x])
root[x]->ch[tmp] = merge(root[x]->ch[tmp],root[p]);
root[x]->siz = root[x]->ch[tmp]->siz;
if(root[x]->siz+c[x] > ansv)
{
ansv = root[x]->siz+c[x];
ans=;
}
else if(root[x]->siz+c[x] == ansv) ans++;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=;i<=n;i++) g[i]=;
totE=;
for(int i=;i<=n;i++) scanf("%d",&c[i]);
S[]='*';
scanf("%s",S+);
ans=;
totn=ansv=;
for(int i=,x,y;i<n;i++)
{
scanf("%d%d",&x,&y);
addedge(x,y);
}
fa[]=;
dfs();
cout << ansv << endl << ans << endl;
}
return ;
}
Acyclic Organic Compounds的更多相关文章
- Codeforces Round #333 (Div. 1) D. Acyclic Organic Compounds trie树合并
D. Acyclic Organic Compounds You are given a tree T with n vertices (numbered 1 through n) and a l ...
- 【CodeForces】601 D. Acyclic Organic Compounds
[题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...
- Codeforces 601D. Acyclic Organic Compounds(四个愿望一次满足)
trie合并的裸题...因为最多只有n个点,所以最多合并n次,复杂度$O(N*26)$. #include<iostream> #include<cstring> #inclu ...
- CF601D:Acyclic Organic Compounds
给n<=300000的树,每个点上有一个字母,一个点的权值为:从该点出发向下走到任意节点停下形成的不同字符串的数量,问最大权值. 题目本身还有一些奇怪要求在此忽略.. Trie合并的模板题. # ...
- cf Round 601
A.The Two Routes(BFS) 给出n个城镇,有m条铁路,铁路的补图是公路,汽车和火车同时从1出发,通过每条路的时间为1,不能同时到达除了1和n的其它点,问他们到达n点最少要用多长时间. ...
- CF数据结构练习
1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...
- Coupled model
常见的coupled models phase English paper WRF-Chem mechanism public data 一些重要的结论 干空气的状态方程 ECWMF驱动WRF 常见的 ...
- skipping the actual organic impact moderation supplied
The most recent running footwear design has gone out. The high cost is actually $150. Expert sports ...
- algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)
Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths fr ...
随机推荐
- adb命令具体解释(二)——手机缺失sqlite3时操作数据库的多种解决方式
在android应用开发无处不在SQLite数据库的身影.那么在开发中怎么使用adb命令操作数据库的功能呢? 以下我们将完整的介绍与数据库操作相关的命令集及当手机缺少sqlite3的时候的多种解决方式 ...
- springMVC学习之验证
验证框中@NotEmpty.@NotBlank.@NotNull乍一看还是容易弄混的.主要使用情况记录一下: @NotEmpty 用在集合类上面 @NotBlank 用在String上面 @NotNu ...
- 关于Swiper(概念)
Swiper 是一款免费以及轻量级的移动设备触控滑块的js框架,使用硬件加速过渡(如果该设备支持的话). 主要使用于移动端的网站.移动web apps,native apps和hybrid apps. ...
- python去除停用词(结巴分词下)
python 去除停用词 结巴分词 import jieba #stopwords = {}.fromkeys([ line.rstrip() for line in open('stopword. ...
- SQL获取年月日方法
方法一:利用DATENAME 在SQL数据库中,DATENAME(datetype,date)函数的作用是从日期中提取指定部分数据,其返回类型是nvarchar.datetype类型见附表1. SEL ...
- Hadoop学习笔记(一)——Hadoop体系结构
HDFS和MapReduce是Hadoop的两大核心. 整个Hadoop体系结构主要是通过HDFS来实现分布式存储的底层支持的,而且通过MapReduce来实现分布式并行任务处理的程序支持. 一.HD ...
- Django-extra的用法
## select提供简单数据 # SELECT age, (age > 18) as is_adult FROM myapp_person; Person.objects.all().extr ...
- Quartz 2D编程指南(2)图形上下文(Graphics Contexts)
Graphics Contexts 一个Graphics Context表示一个绘制目标(也能够理解为图形上下文).它包括绘制系统用于完毕绘制指令的绘制參数和设备相关信息.Graphics ...
- vim tips 集锦
删除文件中的空行 :g/^$/d g 表示 global,全文件 ^ 是行开始,$ 是行结束 d 表示删除该 这里只能匹配到没有白空符的空行,假如要删除有空白符的空行,则使用: :g/^\s*$/d ...
- php pack()函数详解与示例
pack和unpack在一般的程序中还真的不容易见到,但是如果你用过很久以前的php生成excel你就会知道了.他的excel的头就是pack出来的最近在尝试与C交互的时候又用上了这玩意,所以不得不再 ...