题意:

给一以1为根的字符树,给出每个节点的字符与权值,记 $diff_{x}$ 为从 $x$ 出发向下走,能走到多少不同的字符串,求问最大的
$diff_{x} + c_{x}$,并求有多少个 $diff_{x} + c_{x}$。

解法:

考虑$dfs$,从下到上启发式合并 $Trie$ 树,效率 $O(nlogn)$。

 #include <iostream>
#include <cstdio>
#include <cstring> #define N 300010 using namespace std; struct edge
{
int x,to;
}E[N<<]; struct node
{
node *ch[];
int siz; node* init()
{
siz=;
memset(ch,,sizeof(ch));
return this;
};
}spT[N<<],*root[N]; int n,m,totn,totE,ans,ansv;
int fa[N],g[N],c[N];
char S[N]; void addedge(int x,int y)
{
E[++totE] = (edge){y,g[x]}; g[x]=totE;
E[++totE] = (edge){x,g[y]}; g[y]=totE;
} #define p E[i].x node* merge(node *p1,node *p2)
{
if(p1->siz < p2->siz) swap(p1,p2);
for(int t=;t<;t++)
if(p2->ch[t])
{
if(!p1->ch[t]) p1->ch[t]=p2->ch[t];
else p1->ch[t] = merge(p1->ch[t], p2->ch[t]);
}
p1->siz=;
for(int t=;t<;t++)
if(p1->ch[t]) p1->siz+=p1->ch[t]->siz;
return p1;
} void dfs(int x)
{
int tmp=S[x]-'a';
root[x]=spT[++totn].init();
root[x]->ch[tmp]=spT[++totn].init();
for(int i=g[x];i;i=E[i].to)
if(p!=fa[x])
{
fa[p]=x;
dfs(p);
}
for(int i=g[x];i;i=E[i].to)
if(p!=fa[x])
root[x]->ch[tmp] = merge(root[x]->ch[tmp],root[p]);
root[x]->siz = root[x]->ch[tmp]->siz;
if(root[x]->siz+c[x] > ansv)
{
ansv = root[x]->siz+c[x];
ans=;
}
else if(root[x]->siz+c[x] == ansv) ans++;
} int main()
{
while(~scanf("%d",&n))
{
for(int i=;i<=n;i++) g[i]=;
totE=;
for(int i=;i<=n;i++) scanf("%d",&c[i]);
S[]='*';
scanf("%s",S+);
ans=;
totn=ansv=;
for(int i=,x,y;i<n;i++)
{
scanf("%d%d",&x,&y);
addedge(x,y);
}
fa[]=;
dfs();
cout << ansv << endl << ans << endl;
}
return ;
}

Acyclic Organic Compounds的更多相关文章

  1. Codeforces Round #333 (Div. 1) D. Acyclic Organic Compounds trie树合并

    D. Acyclic Organic Compounds   You are given a tree T with n vertices (numbered 1 through n) and a l ...

  2. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  3. Codeforces 601D. Acyclic Organic Compounds(四个愿望一次满足)

    trie合并的裸题...因为最多只有n个点,所以最多合并n次,复杂度$O(N*26)$. #include<iostream> #include<cstring> #inclu ...

  4. CF601D:Acyclic Organic Compounds

    给n<=300000的树,每个点上有一个字母,一个点的权值为:从该点出发向下走到任意节点停下形成的不同字符串的数量,问最大权值. 题目本身还有一些奇怪要求在此忽略.. Trie合并的模板题. # ...

  5. cf Round 601

    A.The Two Routes(BFS) 给出n个城镇,有m条铁路,铁路的补图是公路,汽车和火车同时从1出发,通过每条路的时间为1,不能同时到达除了1和n的其它点,问他们到达n点最少要用多长时间. ...

  6. CF数据结构练习

    1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...

  7. Coupled model

    常见的coupled models phase English paper WRF-Chem mechanism public data 一些重要的结论 干空气的状态方程 ECWMF驱动WRF 常见的 ...

  8. skipping the actual organic impact moderation supplied

    The most recent running footwear design has gone out. The high cost is actually $150. Expert sports ...

  9. algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)

    Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths fr ...

随机推荐

  1. ubuntu环境准备

    一. 桌面方面看起来比较不爽,12的版本用起更不习惯,决定改成命令行登陆 a. vi  /ect/default/grub 文件 b. 修改成第二个红框的情况 c. 执行update-grub命令 d ...

  2. mysql存储过程之循环

    链接: http://www.blogjava.net/rain1102/archive/2011/05/16/350301.html

  3. WPF简单计算器

  4. javascript 高级编程系列 - 函数

    一.函数创建 1. 函数声明 (出现在全局作用域,或局部作用域) function add (a, b) { return a + b; } function add(a, b) { return a ...

  5. MonoTouch.Dialog简介

    新建一个Single View Application项目 添加程序集 MonoTouch.Dialog.dll引用 删除 MainStoryboard.storyboard 添加空类Task.cs ...

  6. 【BZOJ1844/2210】Pku1379 Run Away 模拟退火

    [BZOJ1844/2210]Pku1379 Run Away 题意:矩形区域中有一堆点,求矩形中一个位置使得它到所有点的距离的最小值最大. 题解:模拟退火的裸题,再调调调调调参就行了~ #inclu ...

  7. EasyPlayer Android安卓流媒体播放器实现播放同步录像功能实现(附源码)

    本文转自EasyDarwin团队John的博客:http://blog.csdn.net/jyt0551,John是EasyPusher安卓直播推流.EasyPlayer直播流媒体播放端的开发和维护者 ...

  8. innodb的锁和高并发

    1 innodb的锁 1.1 s锁,即读锁,即share锁 1.2 x锁,即写锁,排他锁 1.3 s锁和x锁之间的关系 多个读锁可以共存,但是读锁不可以和写锁共存.写锁和写锁不可以共存. 1.4 间隙 ...

  9. linux修改进程的名字

    1 修改linux进程名字的基本原理 linux进程以argv[0]作为进程的名字,因此只需要修改argv[0]处的字符串就修改了linux进程的名字. 2 直接修改argv[0]会导致的问题 如果名 ...

  10. 原来 Set 集合也可以排序

    Java 集合类主要由两个接口派生而出: Collection 和 Map.在 Collection 集合中,我们经常用到的是 List 集合和 Map 集合,而 Set 集合出场的机会就相对比较的少 ...