Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法
题目链接:http://codeforces.com/problemset/problem/617/E
4 seconds
256 megabytes
standard input
standard output
Bob has a favorite number k and ai of
length n. Now he asks you to answer m queries.
Each query is given by a pair li and ri and
asks you to count the number of pairs of integers i and j,
such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is
equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) —
the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) —
Bob's array.
Then m lines follow. The i-th
line contains integers li and ri (1 ≤ li ≤ ri ≤ n) —
the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
5 3 1
1 1 1 1 1
1 5
2 4
1 3
9
4
4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:
给出一个序列,作m此查询,每次查询的内容为:在区间[l, r]内,有多少个子区间的异或和为k?
题解:
莫队算法:解决区间询问的离线方法,时间复杂度:O(n^1.5)。
代码如下:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 1e5+; int n, m, k, w, a[maxn];
LL sum, ans[maxn], c[];
//a[i]为前缀异或和,c[i]为在当前区间内,前缀异或和(从1开始)为i的个数。
//可知:a[l-1]^a[r] = val[l]^val[l+1]^………^val[r] struct node
{
int l, r, id;
bool operator<(const node &x)const{
if(l/w==x.l/w) return r<x.r;
return l/w<x.l/w;
}
}q[maxn]; void del(int i)
{
c[a[i]]--;
sum -= c[a[i]^k];
} void add(int i)
{
sum += c[a[i]^k];
c[a[i]]++;
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i = ; i<=n; i++)
{
scanf("%d",&a[i]);
a[i] ^= a[i-];
}
for(int i = ; i<=m; i++)
{
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id = i;
} w = sqrt(n);
sort(q+,q++m); int L = , R = ;
c[] = , sum = ;
for(int i = ; i<=m; i++)
{
while(L<q[i].l) del(L-), L++;
while(L>q[i].l) L--, add(L-);
while(R<q[i].r) R++, add(R);
while(R>q[i].r) del(R), R--;
ans[q[i].id] = sum;
} for(int i = ; i<=m; i++)
printf("%lld\n",ans[i]);
return ;
}
Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法的更多相关文章
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法
E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...
- Codeforces Round #340 (Div. 2) E XOR and Favorite Number 莫队板子
#include<bits/stdc++.h> using namespace std; <<; struct node{ int l,r; int id; }q[N]; in ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】
任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number (莫队)
题目链接:http://codeforces.com/contest/617/problem/E 题目大意:有n个数和m次查询,每次查询区间[l, r]问满足ai ^ ai+1 ^ ... ^ aj ...
- Codeforces Round #340 (Div. 2) E. XOR and Favorite Number
time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standa ...
- codeforces 617E E. XOR and Favorite Number(莫队算法)
题目链接: E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes i ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- CodeForces - 617E XOR and Favorite Number 莫队算法
https://vjudge.net/problem/CodeForces-617E 题意,给你n个数ax,m个询问Ly,Ry, 问LR内有几对i,j,使得ai^...^ aj =k. 题解:第一道 ...
- [Codeforces Round #340 (Div. 2)]
[Codeforces Round #340 (Div. 2)] vp了一场cf..(打不了深夜的场啊!!) A.Elephant 水题,直接贪心,能用5步走5步. B.Chocolate 乘法原理计 ...
随机推荐
- Android 防护扫盲篇
一,已知防护策略 1.不可或缺的混淆 Java 是一种跨平台.解释型语言,Java 源代码编译成的class文件中有大量包含语义的变量名.方法名的信息,很容易被反编译为Java 源代码.为了防止这种现 ...
- 我的VIM
我的vim 压缩包地址:https://pan.baidu.com/s/1bo1kt8j
- 搭建高可用服务注册中心-Spring Cloud学习第一天(非原创)
文章大纲 一.Spring Cloud基础知识介绍二.创建单一的服务注册中心三.创建一个服务提供者四.搭建高可用服务注册中心五.项目源码与参考资料下载六.参考文章 一.Spring Cloud基础 ...
- HDU5618 Jam's problem again
CDQ分治模板题 #include<cstdio> #include<cctype> #include<algorithm> #include<cstring ...
- Windows系统Python包的安装
本文针对于Python初学者,Python老鸟请绕道. 最近同时尝试在Windows10.MacOS.Ubuntu三个系统上安装Python相关的包,整体比较,Ubuntu最简单,Windows10最 ...
- php命令行查看扩展信息
通常,在php的开发过程中,我们会使用到第三方扩展,这时候,我们对于php扩展的信息的查看就显得尤为重要了.一般情况下,我们查看到扩展信息,都是直接通过 cat *.ini 文件来进行,这样子的效率 ...
- OpenGL step to step(1)
在窗体上绘制一个矩形,just a demo #include <GLUT/GLUT.h> void init() { glClearColor(0.0,0.0,0.0,0.0); glS ...
- 在Intellij上面导入项目 & AOP示例项目 & AspectJ学习 & Spring AoP学习
为了学习这篇文章里面下载的代码:http://www.cnblogs.com/charlesblc/p/6083687.html 需要用Intellij导入一个已有工程.源文件原始内容也可见:link ...
- 深入理解Java中的HashMap的实现原理
HashMap继承自抽象类AbstractMap,抽象类AbstractMap实现了Map接口.关系图例如以下所看到的: Java中的Map<key, value>接口同意我们将一个对象作 ...
- java数据库连接池简单实现
package cn.lmj.utils; import java.io.PrintWriter; import java.lang.reflect.InvocationHandler; import ...