PERCEPTRON

Perceptron is a simple two layer neural network with several neurons in input layer, and one or more neurons in output layer. All neurons use step transfer function and network can use LMS based learning algorithm such as Perceptron Learning or Delta Rule. This network can be used as a linear classifier, and it can only be applied to linear separable problems.

To create and train Perceptron neural network using Neuroph Studio do the following:

  1. Create Neuroph Project.
  2. Create Perceptron network.
  3. Create training set (in main menu choose Training >New Training Set).
  4. Train network
  5. Test trained network

Step 1. Create Neuroph project.

Click File > New Project.

Select Neuroph Project, click Next.

Enter project name and location, click Finish.

Project is created, now create neural network.

Step 2. Create Perceptron network.

Click File > New File

Select project from Project drop-down menu, select Neural Network file type, click next.

Enter network name, select Perceptron network type, click next.

In new perceptron dialog enter number ofneurons in input (2) and output layer (1) , choose Perceptron Learningand click Create button.

This will create the Perceptron neural network with two neurons in input, and one in output layer. By default, all neurons with Steptransfer functions.

Now we shall train this simple network to learn logical AND function. First we have to create the training setaccording to AND truth table.

Step 3.  To create training set, click File>New File to open Data Set wizard.

Select DataSet file type, then click next.

Enter training set name, number of inputs andoutputs as shown on picture below and click Finish button.

Then create training set by entering training elements as input and desired output values of neurons in input and outputlayer. Use Add row button to add new elements, and click OK button when finished.

Step 4. Training network. To start network training procedure, drag n' drop training set to corresponding field in the network window, and 'Train' button will become enabled in toolbar. Click the 'Train' button to open Set Learning Parameters dialog.

In Set Learning parameters dialoguse default learning parameters, and just click the Train button.

When the Total Net Error is zero, thetraining is complete.

Step 5. After the training is complete, you can test the network for the whole training set by selecting training set to test, and clicking Test button..

This will show test results in the new tab.

To test single input, use Set Input button. This will open Set Network Input dialog in which you can enter input values for network delimited withspace.

The result of network test is shown on picture below. Network learned logical AND function. As we can see the outputneuron has value 1. Test the network to see how it behaves for other input values.

PERCEPTRON IN JAVA CODE

package org.neuroph.samples;

import java.util.Arrays;
import org.neuroph.core.NeuralNetwork;
import org.neuroph.nnet.Perceptron;
import org.neuroph.core.data.DataSet;
import org.neuroph.core.data.DataSetRow;

/**
* This sample shows how to create, train, save and load simple Perceptron neural network
*/
public class PerceptronSample {

public static void main(String args[]) {

// create training set (logical AND function)
DataSet trainingSet = new DataSet(2, 1);
trainingSet.addRow(new DataSetRow(new double[]{0, 0}, new double[]{0}));
trainingSet.addRow(new DataSetRow(new double[]{0, 1}, new double[]{0}));
trainingSet.addRow(new DataSetRow(new double[]{1, 0}, new double[]{0}));
trainingSet.addRow(new DataSetRow(new double[]{1, 1}, new double[]{1}));

// create perceptron neural network
NeuralNetwork myPerceptron = new Perceptron(2, 1);

// learn the training set
myPerceptron.learn(trainingSet);

// test perceptron
System.out.println("Testing trained perceptron");
testNeuralNetwork(myPerceptron, trainingSet);

// save trained perceptron
myPerceptron.save("mySamplePerceptron.nnet");

// load saved neural network
NeuralNetwork loadedPerceptron = NeuralNetwork.createFromFile("mySamplePerceptron.nnet");

// test loaded neural network
System.out.println("Testing loaded perceptron");
testNeuralNetwork(loadedPerceptron, trainingSet);

}

public static void testNeuralNetwork(NeuralNetwork nnet, DataSet tset) {

for(DataSetRow dataRow : tset.getRows()) {

nnet.setInput(dataRow.getInput());
nnet.calculate();
double[ ] networkOutput = nnet.getOutput();
System.out.print("Input: " + Arrays.toString(dataRow.getInput()) );
System.out.println(" Output: " + Arrays.toString(networkOutput) );

}

}

}

EXTERNAL LINKS

To learn more about the Perceptrons see:

Neuroph studio 入门教程的更多相关文章

  1. 自动化测试工具 Test Studio入门教程

    Test Studio安装 可以到下载试用版 官网 http://www.telerik.com/teststudio , 装完以后需要装silverlight 安装好了,主界面是介个样子的 Test ...

  2. Android Studio JNI开发入门教程

    Android Studio JNI开发入门教程 2016-08-29 14:38 3269人阅读 评论(0) 收藏 举报  分类: JNI(3)    目录(?)[+]   概述 在Andorid ...

  3. 《Visual C++ 2010入门教程》系列一:关于Visual Studio、VC和C++的那些事

    原文:http://www.cnblogs.com/Mrt-02/archive/2011/07/24/2115606.html 作者:董波 日期:2010.6.15 写在前面 在我还在上学的时候,我 ...

  4. 官方入门教程和文档 | Visual Studio

    Visual Studio 2017 概述 | Microsoft Docs(直接教你用vs) https://docs.microsoft.com/zh-cn/visualstudio/ide/vi ...

  5. 1,[VS入门教程] 使用Visual Studio写c语言 入门与技巧精品文~~~~下载安装篇

    Microsoft Visual Studio是微软(俗称巨硬)公司出品的强大IDE(Integrated Development Environment 集成开发环境),功能强大齐全,界面舒服之类的 ...

  6. eclipse再见,android studio 新手入门教程(一)基本设置

    写在前面: 作为一个刚半只脚踏入android开发的新手,在使用eclipse开发了两个自我感觉不甚成熟的商城类app之后,遇到了一些问题,总结为如下: 代码复用性.findviewById,oncl ...

  7. SharePoint 2013 入门教程

    以下文章是自己在学习SharePoint的过程中,不断积累和总结的博文,现在总结一个目录,分享给大家.这个博客也是自己从SharePoint入门,到一个SharePoint开发的成长记录,里面记录的都 ...

  8. .NET轻量级MVC框架:Nancy入门教程(二)——Nancy和MVC的简单对比

    在上一篇的.NET轻量级MVC框架:Nancy入门教程(一)——初识Nancy中,简单介绍了Nancy,并写了一个Hello,world.看到大家的评论,都在问Nancy的优势在哪里?和微软的MVC比 ...

  9. UWP 入门教程2——如何实现自适应用户界面

    系列文章 UWP入门教程1——UWP的前世今生 如上文所说的,布局面板根据可用的屏幕空间,指定界面元素的大小和位置.例如StackPanel 会水平或垂直排列界面元素.Grid 布局与CSS 中的表格 ...

随机推荐

  1. virtio是啥子

    这个山头今天好像要攻占下来了 guest os中的一些特权操作会被hypervhisor给接收,这里一个很重要的认识是:hypervisor是os的os,既然要访问资源,那么就需要经过整机资源的管理者 ...

  2. elasticsearch6 学习之批量操作

    环境:elasticsearch6.1.2        kibana6.1.2  一.mget批量查询 mget可以将多个请求才能获的数据,合并到一个请求中以节省网络开销. 1.查询同一个索引下,通 ...

  3. 【前端学习笔记05】JavaScript数据存储Cookie相关方法封装

    //Cookie设置 //设置新cookie function setCookie(name,value,duration){ var date = new Date(); date.setTime( ...

  4. 秒杀多线程第八篇 经典线程同步 信号量Semaphore (续)

    java semaphore实现: Semaphore当前在多线程环境下被扩放使用,操作系统的信号量是个很重要的概念,在进程控制方面都有应用.Java 并发库 的Semaphore 可以很轻松完成信号 ...

  5. Jmeter如何连接数据库Mysql

    1. 下载jdbc 的驱动 mysql-connector-java-5.1.41-bin.jar,并将该驱动放到路径: D:\apache-jmeter-3.0\lib\ 2. 打开Jmeter 工 ...

  6. BZOJ3743 COCI2015Kamp(树形dp)

    设f[i]为由i开始遍历完子树内所要求的点的最短时间,g[i]为由i开始遍历完子树内所要求的点最后回到i的最短时间.则g[i]=Σ(g[j]+2),f[i]=min{g[i]-g[j]+f[j]-1} ...

  7. Ubuntu18.04 创建与编辑热点的方法

    在终端输入 nm-connection-editor 修改Hotspot,里边有热点名称及密码 当修改完了这些,要关闭热点,重新打开,这样才会生效!

  8. C 类网络的子网快速划分

    CIDR ( Classless Inter-Domain Routing ,无类域间路由选择) 进行子网划分的方法有很多,最适合你的方式就是正确的方式.在 C 类地址中,只有 8 位用于定义主机.注 ...

  9. 测试开发linux面试之三:后台进程之操作

    Hi,大家好我是Tom,继上次分享之后这次给大家带来新的知识. 进程是Linux系统中一个非常重要的概念.Linux是一个多任务的操作系统,系统上经常同时运行着多个进程.我们不关心这些进程究竟是如何分 ...

  10. PHP 中的新语法 new static 是个啥意思?

    简单通俗的来说, self就是写在哪个类里面, 实际调用的就是这个类.所谓的后期静态绑定, static代表使用的这个类, 就是你在父类里写的static, 然后通过子类直接/间接用到了这个stati ...