numpy数组 拼接
转载自:https://blog.csdn.net/zyl1042635242/article/details/43162031
数组拼接方法一
首先将数组转成列表,然后利用列表的拼接函数append()、extend()等进行拼接处理,最后将列表转成数组。
例1:
>>> import numpy as np
>>> a=np.array([1,2,5])
>>> b=np.array([10,12,15])
>>> a_list=list(a)
>>> b_list=list(b)
>>> a_list.extend(b_list)
>>> a_list
[1, 2, 5, 10, 12, 15]
>>> a=np.array(a_list)
>>> a
array([ 1, 2, 5, 10, 12, 15])
该方法只适用于简单的一维数组拼接,由于转换过程很耗时间,对于大量数据的拼接一般不建议使用。
数组拼接方法二
思路:numpy提供了numpy.append(arr, values, axis=None)函数。对于参数规定,要么一个数组和一个数值;要么两个数组,不能三个及以上数组直接append拼接。append函数返回的始终是一个一维数组。
示例2:
>>> a=np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> np.append(a,10)
array([ 0, 1, 2, 3, 4, 10])
>>> a
array([0, 1, 2, 3, 4])
>>> b=np.array([11,22,33])
>>> b
array([11, 22, 33])
>>> np.append(a,b)
array([ 0, 1, 2, 3, 4, 11, 22, 33])
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> b=np.array([[7,8,9],[10,11,12]])
>>> b
array([[ 7, 8, 9],
[10, 11, 12]])
>>> np.append(a,b)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
numpy的数组没有动态改变大小的功能,numpy.append()函数每次都会重新分配整个数组,并把原来的数组复制到新数组中。
数组拼接方法三
思路:numpy提供了numpy.concatenate((a1,a2,...), axis=0)函数。能够一次完成多个数组的拼接。其中a1,a2,...是数组类型的参数
示例3:
>>> a=np.array([1,2,3])
>>> b=np.array([11,22,33])
>>> c=np.array([44,55,66])
>>> np.concatenate((a,b,c),axis=0) # 默认情况下,axis=0可以不写
array([ 1, 2, 3, 11, 22, 33, 44, 55, 66]) #对于一维数组拼接,axis的值不影响最后的结果
>>> a=np.array([[1,2,3],[4,5,6]])
>>> b=np.array([[11,21,31],[7,8,9]])
>>> np.concatenate((a,b),axis=0)
array([[ 1, 2, 3],
[ 4, 5, 6],
[11, 21, 31],
[ 7, 8, 9]])
>>> np.concatenate((a,b),axis=1) #axis=1表示对应行的数组进行拼接
array([[ 1, 2, 3, 11, 21, 31],
[ 4, 5, 6, 7, 8, 9]])
对numpy.append()和numpy.concatenate()两个函数的运行时间进行比较
示例4:
>>> from time import clock as now
>>> a=np.arange(9999)
>>> b=np.arange(9999)
>>> time1=now()
>>> c=np.append(a,b)
>>> time2=now()
>>> print time2-time1
28.2316728446
>>> a=np.arange(9999)
>>> b=np.arange(9999)
>>> time1=now()
>>> c=np.concatenate((a,b),axis=0)
>>> time2=now()
>>> print time2-time1
20.3934997107
可知,concatenate()效率更高,适合大规模的数据拼接
奇怪,我为啥和他的不一样
numpy数组 拼接的更多相关文章
- python numpy 数组拼接
我就写一下我遇到的,更多具体的请看Python之Numpy数组拼接,组合,连接 >>> aarray([0, 1, 2], [3, 4, 5], [6, 7, ...
- 【Python】numpy 数组拼接、分割
摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...
- numpy——>数组拼接np.concatenate
语法:np.concatenate((a1, a2, ...), axis=0) 1.默认是 axis = 0,也就是说对0轴(行方向)的数组对象,进行其垂直方向(axis=1)的拼接(即数据整行整行 ...
- Python之Numpy数组拼接,组合,连接
转自:https://www.douban.com/note/518335786/?type=like ============改变数组的维度==================已知reshape函数 ...
- numpy库数组拼接np.concatenate的用法
concatenate功能:数组拼接 函数定义:numpy.concatenate((a1, a2, ...), axis=0, out=None)
- NumPy - 数组(定义,拼接)
NumPy 教程(数组) set_printoptions(threshold='nan') NumPy的数组中比较重要ndarray对象属性有: ndarray.ndim:数组的维数(即数组轴的个数 ...
- Numpy数组基本操作(数组索引,数组切片以及数组的形状,数组的拼接与分裂)
一:数组的属性 每个数组都有它的属性,可分为:ndim(数组的维度),shape(数组每个维度的大小),size(数组的总大小),dtype(数组数据的类型) 二:数组索引 和python列表一样,N ...
- 1.2 NumPy数组基础
目录 第一章 numpy入门 1.2 numpy数组基础 1.2.1 数组的属性 1.2.2 数组的索引:获取单个元素 1.2.3 数组切片:获取子数组 1.2.4 数组的变形 1.2.5 数组的拼接 ...
- numpy数组的操作
numpy - 介绍.基本数据类型.多维数组ndarray及其内建函数 http://blog.csdn.net/pipisorry/article/details/22107553 http://w ...
随机推荐
- Linux服务管理 systemctl命令详解
Linux服务器,服务管理--systemctl命令详解,设置开机自启动 syetemclt就是service和chkconfig这两个命令的整合 任务 旧指令 新指令 使某服务自动启动 ch ...
- Linux实战教学笔记14:用户管理初级(上)
第十四节 用户管理初级(上) 标签(空格分隔): Linux实战教学笔记-陈思齐 ---更多资料点我查看 1,账号管理 1.1 管理用户命令汇总 命令 注释说明(特殊颜色的必须掌握) useradd增 ...
- 刷题向》一道关于位运算的神题(BZOJ3668)(HARD-)
个人觉得这道题对于位运算的加深理解很有意义 根据题目所说,我们要求出一个在给定范围里的自变量,使得最终结果最大. 那么因为这道题是针对于位运算的,所以可以想到用对于位运算取极限情况,即对于“0”和“( ...
- js使用浏览器的另存为下载文件
页面上的页面如下: 我需要根据返回的url下载文件: js: //判断浏览器类型 function myBrowser(){ var userAgent = navigator.userAgent; ...
- 解决table边框在打印中不显示的问题
先了解一下,table边框如何设置 一.只对表格table标签设置边框 只对table标签设置border(边框)样式,将让此表格最外层table一个边框,而表格内部不产生边框样式.CSS代码: .t ...
- HttpMessageConverter和ContentNegotiatingViewResolver
HttpMessageConverter 在SpringMVC中,可以使用@RequestBody和@ResponseBody两个注解,分别完成请求报文到对象和对象到响应报文的转换,HttpMessa ...
- code1047 邮票面值设计
dfs+dp dfs枚举每种情况,每层递归确定第k个数i:i = a[k-1]+1 to a[k-1]*n+1 当枚举完一个序列时,使用check()测试它能达到的max 使用dp.设dp[i]为凑成 ...
- layer使用注意事项
ajax一定要设置为异步
- python3--json反序列化
# Auther: Aaron Fan # 加载文件中的数据 import json with open('test.txt','r',encoding='utf-8') as f: info = j ...
- JVM致命错误日志(hs_err_pid.log)解读
JVM致命错误日志(hs_err_pid.log)解读 摘自:https://blog.csdn.net/u013938484/article/details/51811400 2016年07月02日 ...