题目链接:http://noi.openjudge.cn/ch0206/1759/

题解:

  奇怪……之前博客里的o(nlogn)标程在codevs和tyvj上都能AC,偏偏它这里不行

 #include<cstdio>
#define MAXN 1010
int n,a[MAXN],f[MAXN],ans;
inline int max(int x,int y)
{
return x>y?x:y;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
{
scanf("%d",&a[i]);
f[i]=;
}
for(int i=;i<=n;++i)
for(int j=;j<i;++j)
if(a[i]>a[j]&&f[j]+>=f[i])f[i]=f[j]+;
for(int i=;i<=n;++i)ans=max(ans,f[i]);
printf("%d",ans);
return ;
}

openjudge-NOI 2.6-1759 最长上升子序列的更多相关文章

  1. 【noi 2.6_1808】最长公共子序列(DP)

    题意:给2个字符串求其最大公共子序列的长度.解法:这个和一般的状态定义有点不一样,f[i][j]表示 str 前i位和 str2 前j的最大公共子序列的长度,而不是选 str 的第i位和 str2 的 ...

  2. 最长上升子序列(动态规划递推,LIS)

    1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...

  3. dp--最长上升子序列LIS

    1759:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对 ...

  4. OpenJudge 2757 最长上升子序列 / Poj 2533 Longest Ordered Subsequence

    1.链接地址: http://poj.org/problem?id=2533 http://bailian.openjudge.cn/practice/2757 2.题目: 总Time Limit: ...

  5. 【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)

    题意我就不写了.解法有3种: 1.O(n^2).2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数. 1 #include& ...

  6. POJ 2533 - Longest Ordered Subsequence - [最长递增子序列长度][LIS问题]

    题目链接:http://poj.org/problem?id=2533 Time Limit: 2000MS Memory Limit: 65536K Description A numeric se ...

  7. DP练习 最长上升子序列nlogn解法

    openjudge 百练 2757:最长上升子序列 总时间限制:  2000ms 内存限制:  65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...

  8. 最长上升子序列&&最长不下降子序列

    百练2757: 题目描述: 对于给定的序列,求出最长上升子序列的长度. 题目链接:http://bailian.openjudge.cn/practice/2757 解题思路 一.动态规划 1. 找子 ...

  9. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  10. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. day06 小数据池和编码

    一. 上次课内容回顾字典:由{}括起来. 每个元素用逗号隔开, key:value的形式存储数据key: 不可变的. 可哈希的.增删改查:1. 增加: 直接用新key来赋值. dict[key] = ...

  2. nvidia 无显示选项怎么设置全屏游戏

    转自:2楼   http://nbbbs.zol.com.cn/41/218_408871.html 网上搜的方法: 1.按键盘上那个windows键+R,输入regedit 2.然后就是下面的步骤了 ...

  3. WlanGetAvailableNetworkList

    原文msdn链接地址:https://docs.microsoft.com/zh-cn/windows/desktop/api/wlanapi/nf-wlanapi-wlangetavailablen ...

  4. jq从数组中删除指定元素(根据自定义条件) 超好用的 $.grep() 方法

    转: jQuery.grep() 什么是jQuery.grep()? jQuery.grep()是一个查找满足过滤函数的数组元素的函数.原始数组不受影响,返回值为数组. 用法介绍: 写法: jQuer ...

  5. 对于redis框架的理解(四)

    上一篇讲述了eventloop的结构和创建,添加文件事件删除文件事件,派发等等. 而eventloop主要就是调用不同网络模型完成事件监听和派发的. 这一篇主要讲述epoll网络模型,redis是如何 ...

  6. STL源码分析-string

    http://note.youdao.com/noteshare?id=c9b53b7d3379939aae7c05d1ea141a42

  7. C++ ------ static_cast,dynamic_cast,reinterpret_cast,const_cast

    C++类型转换分为:隐式类型转换和显式类型转换 第1部分. 隐式类型转换 又称为“标准转换”,包括以下几种情况:1) 算术转换(Arithmetic conversion) : 在混合类型的算术表达式 ...

  8. tf.session.run()单函数运行和多函数运行区别

    tf.session.run()单函数运行和多函数运行区别 觉得有用的话,欢迎一起讨论相互学习~Follow Me problem instruction sess.run([a,b]) # (1)同 ...

  9. OpenCV---超大图像二值化和空白区域过滤

    超大图像的二值化方法 1.可以采用分块方法, 2.先缩放处理就行二值化,然后还原大小 一:分块处理超大图像的二值化问题 def big_image_binary(image): print(image ...

  10. vue-router的新奇写法

    加班中........................... 我们以前写路由是下面这样的 这导致了页面一多,我们的路由文件内容就比较多,不好看. 下面我为大家介绍一下,新的一种写法 这种写法,我们只需 ...