UVA10870—Recurrences(简单矩阵快速幂)
题目链接:https://vjudge.net/problem/UVA-10870
题目意思:
给出a1,a2,a3,a4,a5………………ad,然后算下面这个递推式子,简单的矩阵快速幂,裸题,但是第一个次遇到了矩阵大小不确定的矩阵快速幂,而且在这道题里面第一次明白了如何构造矩阵。算是矩阵快速幂的学习的一个小里程碑吧。
f(n) = a1 *f(n - 1) + a2 *f(n - 2) + a3 *f(n - 3) + … + ad* f(n - d), n > d.求f(n)
代码:
//Author: xiaowuga
#include <bits/stdc++.h>
#define maxx INT_MAX
#define minn INT_MIN
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
ll n;
ll MOD;
struct Matrix{
ll mat[][];
void clear(){
memset(mat,,sizeof(mat));
}
Matrix operator * (const Matrix & m) const{
Matrix tmp;
tmp.clear();
for(int i=;i<n;i++)
for(int k=;k<n;k++){
if(mat[i][k]==) continue;
for(int j=;j<n;j++){
tmp.mat[i][j]+=mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j]%=MOD;
}
}
return tmp;
}
};
Matrix POW(Matrix &m,int k){
Matrix ans;
memset(ans.mat,,sizeof(ans.mat));
for(int i=;i<n;i++) ans.mat[i][i]=;
while(k){
if(k&) ans=ans*m;
k/=;
m=m*m;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
int T;
while(cin>>n>>T>>MOD&&n&&T&&MOD){
Matrix m;
m.clear();
for(int i=;i<n;i++){
cin>>m.mat[][i];
m.mat[][i]%=MOD;
}
ll f[];
for(int i=;i<n;i++){
cin>>f[i];
}
for(int i=;i<n;i++){
m.mat[i][i-]=;
}
Matrix ans=POW(m,T-n);
ll sum=;
for(int i=;i<n;i++){
sum=sum+ans.mat[][i]*f[n--i]%MOD;
sum%=MOD;
}
cout<<sum<<endl;
}
return ;
}
UVA10870—Recurrences(简单矩阵快速幂)的更多相关文章
- UVA10870 Recurrences (矩阵快速幂及构造方法详解)
题意: F(n) = a1 * F(n-1) + a2 * F(n-2)+ ···· + ad * F(n-d). 求给你的n . 很明显这是一道矩阵快速幂的题目. 题解: [Fn-1, Fn-2, ...
- HDU 1575 Tr A( 简单矩阵快速幂 )
链接:传送门 思路:简单矩阵快速幂,算完 A^k 后再求一遍主对角线上的和取个模 /********************************************************** ...
- HDU 4990 Reading comprehension 简单矩阵快速幂
Problem Description Read the program below carefully then answer the question.#pragma comment(linker ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- ZOJ 2853 Evolution 【简单矩阵快速幂】
这道题目第二次看的时候才彻底理解了是什么意思 把题目转化为数学模型分析后就是 有一个初始序列, 有一个进化率矩阵 求的是初始序列 与进化率矩阵进行 m 次运算后, 初始序列最后一位的答案 那么显然,可 ...
- 简单矩阵快速幂(HDU Tr A 1575)
题目中所给的方阵就是一个矩阵,而就是只要将题目所给矩阵不断进行相乘即可,本题中我采用的是直接重载运算符*,使矩阵每一个都进行运算,可以简化为只对对角线上的元素进行运算.最后所得结果就只需将最终的矩阵上 ...
- Codeforces - 185A 简单矩阵快速幂
题意:求第n个三角形内部的上三角形个数 对每个三角形分别维护上下三角形个数,记为\(dp[1][i],dp[2][i]\) 规律很明显是 \(dp[1][i+1]=3*dp[1][i]+dp[2][i ...
- hdu------(1757)A Simple Math Problem(简单矩阵快速幂)
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- POJ3070矩阵快速幂简单题
题意: 求斐波那契后四位,n <= 1,000,000,000. 思路: 简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...
随机推荐
- JVM基础学习之基本概念、可见性与同步
开发高性能并发应用不是一件容易的事情.这类应用的例子包括高性能Web服务器.游戏服务器和搜索引擎爬虫等.这样的应用可能需要同时处理成千上万个请求.对于这样的应用,一般采用多线程或事件驱动的 架构 .对 ...
- ORACLE中DELETE和TRUNCATE的区别
语法 delete from AA truncate table AA 区别 1.delete from后面可以写条件(也就是where子句,delete from AA where aa.列名 = ...
- ThreadPool has stuck threads
weblogic 10后台出现警告,原因:ThreadPool has stuck threads 在WEBLOGIC中如果一个线程执行时间超过了Stuck Thread Max Time规定的时间, ...
- CentOS7 上systemctl
CentOS 上systemctl 的用法 [日期:--] 来源:Linux社区 作者:Linux [字体:大 中 小] 我们对service和chkconfig两个命令都不陌生,systemctl ...
- [Linux内核]软中断与硬中断
转自:http://blog.csdn.net/zhangskd/article/details/21992933 本文主要内容:硬中断 / 软中断的原理和实现 内核版本:2.6.37 Author: ...
- 科技巨头们以 "A" 取名的时尚潮流
科技巨头们以 "A" 取名的时尚潮流 from 公众号 WebHub 世界上有许多巨头公司喜欢以字母 a 打头作公司起名.改名,这主要是因为电话薄是以字母排序的(外国人习惯家里 ...
- mysql实现经纬度计算两个坐标之间的距离sql语句
select *,(2 * 6378.137* ASIN(SQRT(POW(SIN(PI()*(111.86141967773438-latitude)/360),2)+COS(PI()*33.070 ...
- HTML和CSS的盒子模型(Box model)
本文作为属性篇的最后一篇文章, 将讲述HTML和CSS的关键—盒子模型(Box model). 理解Box model的关键便是margin和padding属性, 而正确理解这两个属性也是学习用css ...
- Sencha Touch快速入门(译)
翻译自:http://www.sencha.com/learn/sencha-touch-quick-start/ 1.下载Sencha Touch SDK——下载链接 2.安装Safari或Chro ...
- MFC存储图片到SQL Server数据库
第一步:建立数据库表,比如:id char,pic image. 第二步:建立MFC单文档应用程序,再添加类CMyRecordset,基类选择CRecordset,导入数据库的刚建立的表. 第三步:在 ...